Multi-objective Bayesian Optimization¶
TNK function $n=2$ variables: $x_i \in [0, \pi], i=1,2$
Objectives:
- $f_i(x) = x_i$
Constraints:
- $g_1(x) = -x_1^2 -x_2^2 + 1 + 0.1 \cos\left(16 \arctan \frac{x_1}{x_2}\right) \le 0$
- $g_2(x) = (x_1 - 1/2)^2 + (x_2-1/2)^2 \le 0.5$
In [1]:
Copied!
# set values if testing
import os
import pandas as pd
import numpy as np
from xopt import Xopt, Evaluator
from xopt.generators.bayesian import MOBOGenerator
from xopt.resources.test_functions.tnk import evaluate_TNK, tnk_vocs
import matplotlib.pyplot as plt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
N_MC_SAMPLES = 1 if SMOKE_TEST else 128
NUM_RESTARTS = 1 if SMOKE_TEST else 20
N_STEPS = 1 if SMOKE_TEST else 30
MAX_ITER = 1 if SMOKE_TEST else 200
evaluator = Evaluator(function=evaluate_TNK)
print(tnk_vocs.dict())
# set values if testing
import os
import pandas as pd
import numpy as np
from xopt import Xopt, Evaluator
from xopt.generators.bayesian import MOBOGenerator
from xopt.resources.test_functions.tnk import evaluate_TNK, tnk_vocs
import matplotlib.pyplot as plt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
N_MC_SAMPLES = 1 if SMOKE_TEST else 128
NUM_RESTARTS = 1 if SMOKE_TEST else 20
N_STEPS = 1 if SMOKE_TEST else 30
MAX_ITER = 1 if SMOKE_TEST else 200
evaluator = Evaluator(function=evaluate_TNK)
print(tnk_vocs.dict())
/home/runner/work/Xopt/Xopt/.venv/lib/python3.12/site-packages/pyro/ops/stats.py:527: SyntaxWarning: invalid escape sequence '\g'
we have :math:`ES^{*}(P,Q) \ge ES^{*}(Q,Q)` with equality holding if and only if :math:`P=Q`, i.e.
{'variables': {'x1': (0.0, 3.14159), 'x2': (0.0, 3.14159)}, 'constraints': {'c1': ('GREATER_THAN', 0.0), 'c2': ('LESS_THAN', 0.5)}, 'objectives': {'y1': 'MINIMIZE', 'y2': 'MINIMIZE'}, 'constants': {'a': 'dummy_constant'}, 'observables': []}
In [2]:
Copied!
generator = MOBOGenerator(vocs=tnk_vocs, reference_point={"y1": 1.5, "y2": 1.5})
generator.n_monte_carlo_samples = N_MC_SAMPLES
generator.numerical_optimizer.n_restarts = NUM_RESTARTS
generator.numerical_optimizer.max_iter = MAX_ITER
generator.gp_constructor.use_low_noise_prior = True
X = Xopt(generator=generator, evaluator=evaluator, vocs=tnk_vocs)
X.evaluate_data(pd.DataFrame({"x1": [1.0, 0.75], "x2": [0.75, 1.0]}))
for i in range(N_STEPS):
print(i)
X.step()
generator = MOBOGenerator(vocs=tnk_vocs, reference_point={"y1": 1.5, "y2": 1.5})
generator.n_monte_carlo_samples = N_MC_SAMPLES
generator.numerical_optimizer.n_restarts = NUM_RESTARTS
generator.numerical_optimizer.max_iter = MAX_ITER
generator.gp_constructor.use_low_noise_prior = True
X = Xopt(generator=generator, evaluator=evaluator, vocs=tnk_vocs)
X.evaluate_data(pd.DataFrame({"x1": [1.0, 0.75], "x2": [0.75, 1.0]}))
for i in range(N_STEPS):
print(i)
X.step()
0
In [3]:
Copied!
X.generator.data
X.generator.data
Out[3]:
| x1 | x2 | a | y1 | y2 | c1 | c2 | xopt_runtime | xopt_error | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1.000000 | 0.750000 | dummy_constant | 1.000000 | 0.750000 | 0.626888 | 0.312500 | 0.000405 | False |
| 1 | 0.750000 | 1.000000 | dummy_constant | 0.750000 | 1.000000 | 0.626888 | 0.312500 | 0.000141 | False |
| 2 | 0.168922 | 1.610441 | dummy_constant | 0.168922 | 1.610441 | 1.632173 | 1.342692 | 0.011439 | False |
plot results¶
In [4]:
Copied!
fig, ax = plt.subplots()
theta = np.linspace(0, np.pi / 2)
r = np.sqrt(1 + 0.1 * np.cos(16 * theta))
x_1 = r * np.sin(theta)
x_2_lower = r * np.cos(theta)
x_2_upper = (0.5 - (x_1 - 0.5) ** 2) ** 0.5 + 0.5
z = np.zeros_like(x_1)
# ax2.plot(x_1, x_2_lower,'r')
ax.fill_between(x_1, z, x_2_lower, fc="white")
circle = plt.Circle(
(0.5, 0.5), 0.5**0.5, color="r", alpha=0.25, zorder=0, label="Valid Region"
)
ax.add_patch(circle)
history = pd.concat(
[X.data, tnk_vocs.feasibility_data(X.data)], axis=1, ignore_index=False
)
ax.plot(*history[["x1", "x2"]][history["feasible"]].to_numpy().T, ".C1")
ax.plot(*history[["x1", "x2"]][~history["feasible"]].to_numpy().T, ".C2")
ax.set_xlim(0, 3.14)
ax.set_ylim(0, 3.14)
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_aspect("equal")
fig, ax = plt.subplots()
theta = np.linspace(0, np.pi / 2)
r = np.sqrt(1 + 0.1 * np.cos(16 * theta))
x_1 = r * np.sin(theta)
x_2_lower = r * np.cos(theta)
x_2_upper = (0.5 - (x_1 - 0.5) ** 2) ** 0.5 + 0.5
z = np.zeros_like(x_1)
# ax2.plot(x_1, x_2_lower,'r')
ax.fill_between(x_1, z, x_2_lower, fc="white")
circle = plt.Circle(
(0.5, 0.5), 0.5**0.5, color="r", alpha=0.25, zorder=0, label="Valid Region"
)
ax.add_patch(circle)
history = pd.concat(
[X.data, tnk_vocs.feasibility_data(X.data)], axis=1, ignore_index=False
)
ax.plot(*history[["x1", "x2"]][history["feasible"]].to_numpy().T, ".C1")
ax.plot(*history[["x1", "x2"]][~history["feasible"]].to_numpy().T, ".C2")
ax.set_xlim(0, 3.14)
ax.set_ylim(0, 3.14)
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_aspect("equal")
Plot path through input space¶
In [5]:
Copied!
ax = history.plot("x1", "x2")
ax.set_ylim(0, 3.14)
ax.set_xlim(0, 3.14)
ax.set_aspect("equal")
ax = history.plot("x1", "x2")
ax.set_ylim(0, 3.14)
ax.set_xlim(0, 3.14)
ax.set_aspect("equal")
In [6]:
Copied!
## visualize model
X.generator.visualize_model(show_feasibility=True)
## visualize model
X.generator.visualize_model(show_feasibility=True)
Out[6]:
(<Figure size 800x1980 with 22 Axes>,
array([[<Axes: title={'center': 'Posterior Mean [y1]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [y1]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Posterior Mean [y2]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [y2]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Posterior Mean [c1]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [c1]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Posterior Mean [c2]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [c2]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Acq. Function'}, xlabel='x1', ylabel='x2'>,
<Axes: >],
[<Axes: title={'center': 'Feasibility'}, xlabel='x1', ylabel='x2'>,
<Axes: >]], dtype=object))
In [7]:
Copied!
X.generator.update_pareto_front_history()
X.generator.pareto_front_history.plot(y="hypervolume", label="Hypervolume")
X.generator.update_pareto_front_history()
X.generator.pareto_front_history.plot(y="hypervolume", label="Hypervolume")
Out[7]:
<Axes: >
In [8]:
Copied!
X.generator.pareto_front_history
X.generator.pareto_front_history
Out[8]:
| iteration | hypervolume | n_non_dominated | |
|---|---|---|---|
| 0 | 0 | 0.375 | 1 |
| 1 | 1 | 0.500 | 2 |
| 2 | 2 | 0.500 | 2 |
In [9]:
Copied!
X.data
X.data
Out[9]:
| x1 | x2 | a | y1 | y2 | c1 | c2 | xopt_runtime | xopt_error | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1.000000 | 0.750000 | dummy_constant | 1.000000 | 0.750000 | 0.626888 | 0.312500 | 0.000405 | False |
| 1 | 0.750000 | 1.000000 | dummy_constant | 0.750000 | 1.000000 | 0.626888 | 0.312500 | 0.000141 | False |
| 2 | 0.168922 | 1.610441 | dummy_constant | 0.168922 | 1.610441 | 1.632173 | 1.342692 | 0.011439 | False |
In [ ]:
Copied!