Upper Confidence Bound BO¶
In [1]:
Copied!
from xopt import Xopt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
from xopt import Xopt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
The Xopt object can be instantiated from a JSON or YAML file, or a dict, with the proper structure.
Here we will make one
In [2]:
Copied!
# Make a proper input file.
YAML = """
generator:
name: upper_confidence_bound
beta: 0.1
evaluator:
function: xopt.resources.test_functions.sinusoid_1d.evaluate_sinusoid
vocs:
variables:
x1: [0, 6.28]
objectives:
y1: 'MINIMIZE'
"""
# Make a proper input file.
YAML = """
generator:
name: upper_confidence_bound
beta: 0.1
evaluator:
function: xopt.resources.test_functions.sinusoid_1d.evaluate_sinusoid
vocs:
variables:
x1: [0, 6.28]
objectives:
y1: 'MINIMIZE'
"""
In [3]:
Copied!
X = Xopt.from_yaml(YAML)
X
X = Xopt.from_yaml(YAML)
X
Out[3]:
Xopt
________________________________
Version: 2.6.7.dev55+g7aa2f3618.d20250930
Data size: 0
Config as YAML:
dump_file: null
evaluator:
function: xopt.resources.test_functions.sinusoid_1d.evaluate_sinusoid
function_kwargs: {}
max_workers: 1
vectorized: false
generator:
beta: 0.1
computation_time: null
custom_objective: null
fixed_features: null
gp_constructor:
covar_modules: {}
custom_noise_prior: null
mean_modules: {}
name: standard
trainable_mean_keys: []
transform_inputs: true
use_cached_hyperparameters: false
use_low_noise_prior: false
max_travel_distances: null
model: null
n_candidates: 1
n_interpolate_points: null
n_monte_carlo_samples: 128
name: upper_confidence_bound
numerical_optimizer:
max_iter: 2000
max_time: 5.0
n_restarts: 20
name: LBFGS
supports_batch_generation: true
supports_constraints: true
supports_single_objective: true
turbo_controller: null
use_cuda: false
max_evaluations: null
serialize_inline: false
serialize_torch: false
strict: true
vocs:
constants: {}
constraints: {}
objectives:
y1: MINIMIZE
observables: []
variables:
x1:
- 0.0
- 6.28
Run Optimization¶
In [4]:
Copied!
X.random_evaluate(3)
for i in range(5):
print(i)
X.step()
X.random_evaluate(3)
for i in range(5):
print(i)
X.step()
0
1 2 3
4
View output data¶
In [5]:
Copied!
X.data
X.data
Out[5]:
| x1 | y1 | c1 | xopt_runtime | xopt_error | |
|---|---|---|---|---|---|
| 0 | 5.218640 | -0.874569 | -19.165903 | 0.000012 | False |
| 1 | 0.311845 | 0.306815 | -5.613417 | 0.000005 | False |
| 2 | 4.188778 | -0.866019 | -19.026173 | 0.000004 | False |
| 3 | 4.876270 | -0.986602 | -18.954942 | 0.000011 | False |
| 4 | 4.819940 | -0.994222 | -18.712480 | 0.000010 | False |
| 5 | 4.706106 | -0.999980 | -18.500770 | 0.000010 | False |
| 6 | 4.709298 | -0.999995 | -18.500186 | 0.000009 | False |
| 7 | 4.710414 | -0.999998 | -18.500076 | 0.000009 | False |
Visualize model¶
In [6]:
Copied!
fig, ax = X.generator.visualize_model(n_grid=100)
fig, ax = X.generator.visualize_model(n_grid=100)