Multi-objective Bayesian Optimization¶
TNK function $n=2$ variables: $x_i \in [0, \pi], i=1,2$
Objectives:
- $f_i(x) = x_i$
Constraints:
- $g_1(x) = -x_1^2 -x_2^2 + 1 + 0.1 \cos\left(16 \arctan \frac{x_1}{x_2}\right) \le 0$
- $g_2(x) = (x_1 - 1/2)^2 + (x_2-1/2)^2 \le 0.5$
In [1]:
Copied!
# set values if testing
import os
import pandas as pd
import numpy as np
from xopt import Xopt, Evaluator
from xopt.generators.bayesian import MOBOGenerator
from xopt.resources.test_functions.tnk import evaluate_TNK, tnk_vocs
import matplotlib.pyplot as plt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
N_MC_SAMPLES = 1 if SMOKE_TEST else 128
NUM_RESTARTS = 1 if SMOKE_TEST else 20
N_STEPS = 1 if SMOKE_TEST else 30
MAX_ITER = 1 if SMOKE_TEST else 200
evaluator = Evaluator(function=evaluate_TNK)
print(tnk_vocs.dict())
# set values if testing
import os
import pandas as pd
import numpy as np
from xopt import Xopt, Evaluator
from xopt.generators.bayesian import MOBOGenerator
from xopt.resources.test_functions.tnk import evaluate_TNK, tnk_vocs
import matplotlib.pyplot as plt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
N_MC_SAMPLES = 1 if SMOKE_TEST else 128
NUM_RESTARTS = 1 if SMOKE_TEST else 20
N_STEPS = 1 if SMOKE_TEST else 30
MAX_ITER = 1 if SMOKE_TEST else 200
evaluator = Evaluator(function=evaluate_TNK)
print(tnk_vocs.dict())
{'variables': {'x1': [0.0, 3.14159], 'x2': [0.0, 3.14159]}, 'constraints': {'c1': ['GREATER_THAN', 0.0], 'c2': ['LESS_THAN', 0.5]}, 'objectives': {'y1': 'MINIMIZE', 'y2': 'MINIMIZE'}, 'constants': {'a': 'dummy_constant'}, 'observables': []}
In [2]:
Copied!
generator = MOBOGenerator(vocs=tnk_vocs, reference_point={"y1": 1.5, "y2": 1.5})
generator.n_monte_carlo_samples = N_MC_SAMPLES
generator.numerical_optimizer.n_restarts = NUM_RESTARTS
generator.numerical_optimizer.max_iter = MAX_ITER
generator.gp_constructor.use_low_noise_prior = True
X = Xopt(generator=generator, evaluator=evaluator, vocs=tnk_vocs)
X.evaluate_data(pd.DataFrame({"x1": [1.0, 0.75], "x2": [0.75, 1.0]}))
for i in range(N_STEPS):
print(i)
X.step()
generator = MOBOGenerator(vocs=tnk_vocs, reference_point={"y1": 1.5, "y2": 1.5})
generator.n_monte_carlo_samples = N_MC_SAMPLES
generator.numerical_optimizer.n_restarts = NUM_RESTARTS
generator.numerical_optimizer.max_iter = MAX_ITER
generator.gp_constructor.use_low_noise_prior = True
X = Xopt(generator=generator, evaluator=evaluator, vocs=tnk_vocs)
X.evaluate_data(pd.DataFrame({"x1": [1.0, 0.75], "x2": [0.75, 1.0]}))
for i in range(N_STEPS):
print(i)
X.step()
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
In [3]:
Copied!
X.generator.data
X.generator.data
Out[3]:
x1 | x2 | a | y1 | y2 | c1 | c2 | xopt_runtime | xopt_error | |
---|---|---|---|---|---|---|---|---|---|
0 | 1.000000 | 0.750000 | dummy_constant | 1.000000 | 0.750000 | 0.626888 | 0.312500 | 0.000155 | False |
1 | 0.750000 | 1.000000 | dummy_constant | 0.750000 | 1.000000 | 0.626888 | 0.312500 | 0.000135 | False |
2 | 1.399633 | 0.266099 | dummy_constant | 1.399633 | 0.266099 | 1.128863 | 0.864049 | 0.000160 | False |
3 | 2.797334 | 0.852486 | dummy_constant | 2.797334 | 0.852486 | 7.549755 | 5.401989 | 0.000153 | False |
4 | 0.550963 | 0.000000 | dummy_constant | 0.550963 | 0.000000 | -0.796440 | 0.252597 | 0.000146 | False |
5 | 1.107526 | 0.177343 | dummy_constant | 1.107526 | 0.177343 | 0.340533 | 0.473195 | 0.000150 | False |
6 | 0.000000 | 3.141590 | dummy_constant | 0.000000 | 3.141590 | 8.769588 | 7.227998 | 0.000150 | False |
7 | 0.389903 | 1.059314 | dummy_constant | 0.389903 | 1.059314 | 0.193978 | 0.324954 | 0.000153 | False |
8 | 1.016162 | 0.099108 | dummy_constant | 1.016162 | 0.099108 | 0.040887 | 0.427138 | 0.000151 | False |
9 | 0.697516 | 0.821777 | dummy_constant | 0.697516 | 0.821777 | 0.135646 | 0.142553 | 0.000148 | False |
10 | 1.002548 | 0.010400 | dummy_constant | 1.002548 | 0.010400 | -0.093415 | 0.492263 | 0.000148 | False |
11 | 0.172140 | 1.090533 | dummy_constant | 0.172140 | 1.090533 | 0.299304 | 0.456221 | 0.000149 | False |
12 | 0.901752 | 0.540057 | dummy_constant | 0.901752 | 0.540057 | 0.175128 | 0.163009 | 0.000167 | False |
13 | 0.026244 | 1.007488 | dummy_constant | 0.026244 | 1.007488 | -0.075722 | 0.481989 | 0.000149 | False |
14 | 0.093131 | 1.048678 | dummy_constant | 0.093131 | 1.048678 | 0.093100 | 0.466590 | 0.000148 | False |
15 | 1.048155 | 0.059815 | dummy_constant | 1.048155 | 0.059815 | 0.040996 | 0.494236 | 0.000150 | False |
16 | 0.437831 | 0.953846 | dummy_constant | 0.437831 | 0.953846 | 0.019100 | 0.209841 | 0.000149 | False |
17 | 0.039480 | 1.021959 | dummy_constant | 0.039480 | 1.021959 | -0.035556 | 0.484520 | 0.000153 | False |
18 | 0.760770 | 0.779738 | dummy_constant | 0.760770 | 0.779738 | 0.088696 | 0.146254 | 0.000154 | False |
19 | 0.945413 | 0.318184 | dummy_constant | 0.945413 | 0.318184 | -0.051305 | 0.231450 | 0.000152 | False |
20 | 0.056750 | 1.034561 | dummy_constant | 0.056750 | 1.034561 | 0.009575 | 0.482226 | 0.000152 | False |
21 | 1.033318 | 0.063656 | dummy_constant | 1.033318 | 0.063656 | 0.016463 | 0.474824 | 0.000154 | False |
22 | 0.956416 | 0.366340 | dummy_constant | 0.956416 | 0.366340 | -0.041941 | 0.226181 | 0.000150 | False |
23 | 1.031065 | 0.035002 | dummy_constant | 1.031065 | 0.035002 | -0.021298 | 0.498254 | 0.000147 | False |
24 | 0.811105 | 0.651917 | dummy_constant | 0.811105 | 0.651917 | 0.099145 | 0.119865 | 0.000149 | False |
25 | 0.756591 | 0.708810 | dummy_constant | 0.756591 | 0.708810 | -0.011865 | 0.109441 | 0.000149 | False |
26 | 1.000465 | 0.218076 | dummy_constant | 1.000465 | 0.218076 | 0.144246 | 0.329947 | 0.000157 | False |
27 | 0.574784 | 0.852321 | dummy_constant | 0.574784 | 0.852321 | 0.156594 | 0.129723 | 0.000125 | False |
28 | 0.284301 | 0.994790 | dummy_constant | 0.284301 | 0.994790 | 0.095994 | 0.291343 | 0.000149 | False |
29 | 0.045751 | 1.039497 | dummy_constant | 0.045751 | 1.039497 | 0.006405 | 0.497398 | 0.000149 | False |
30 | 1.037538 | 0.052504 | dummy_constant | 1.037538 | 0.052504 | 0.010219 | 0.489200 | 0.000149 | False |
31 | 0.000000 | 1.022215 | dummy_constant | 0.000000 | 1.022215 | -0.055077 | 0.522708 | 0.000142 | False |
plot results¶
In [4]:
Copied!
fig, ax = plt.subplots()
theta = np.linspace(0, np.pi / 2)
r = np.sqrt(1 + 0.1 * np.cos(16 * theta))
x_1 = r * np.sin(theta)
x_2_lower = r * np.cos(theta)
x_2_upper = (0.5 - (x_1 - 0.5) ** 2) ** 0.5 + 0.5
z = np.zeros_like(x_1)
# ax2.plot(x_1, x_2_lower,'r')
ax.fill_between(x_1, z, x_2_lower, fc="white")
circle = plt.Circle(
(0.5, 0.5), 0.5**0.5, color="r", alpha=0.25, zorder=0, label="Valid Region"
)
ax.add_patch(circle)
history = pd.concat(
[X.data, tnk_vocs.feasibility_data(X.data)], axis=1, ignore_index=False
)
ax.plot(*history[["x1", "x2"]][history["feasible"]].to_numpy().T, ".C1")
ax.plot(*history[["x1", "x2"]][~history["feasible"]].to_numpy().T, ".C2")
ax.set_xlim(0, 3.14)
ax.set_ylim(0, 3.14)
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_aspect("equal")
fig, ax = plt.subplots()
theta = np.linspace(0, np.pi / 2)
r = np.sqrt(1 + 0.1 * np.cos(16 * theta))
x_1 = r * np.sin(theta)
x_2_lower = r * np.cos(theta)
x_2_upper = (0.5 - (x_1 - 0.5) ** 2) ** 0.5 + 0.5
z = np.zeros_like(x_1)
# ax2.plot(x_1, x_2_lower,'r')
ax.fill_between(x_1, z, x_2_lower, fc="white")
circle = plt.Circle(
(0.5, 0.5), 0.5**0.5, color="r", alpha=0.25, zorder=0, label="Valid Region"
)
ax.add_patch(circle)
history = pd.concat(
[X.data, tnk_vocs.feasibility_data(X.data)], axis=1, ignore_index=False
)
ax.plot(*history[["x1", "x2"]][history["feasible"]].to_numpy().T, ".C1")
ax.plot(*history[["x1", "x2"]][~history["feasible"]].to_numpy().T, ".C2")
ax.set_xlim(0, 3.14)
ax.set_ylim(0, 3.14)
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_aspect("equal")
Plot path through input space¶
In [5]:
Copied!
ax = history.plot("x1", "x2")
ax.set_ylim(0, 3.14)
ax.set_xlim(0, 3.14)
ax.set_aspect("equal")
ax = history.plot("x1", "x2")
ax.set_ylim(0, 3.14)
ax.set_xlim(0, 3.14)
ax.set_aspect("equal")
In [6]:
Copied!
## visualize model
X.generator.visualize_model(show_feasibility=True)
## visualize model
X.generator.visualize_model(show_feasibility=True)
Out[6]:
(<Figure size 800x1980 with 22 Axes>, array([[<Axes: title={'center': 'Posterior Mean [y1]'}, ylabel='x2'>, <Axes: title={'center': 'Posterior SD [y1]'}>], [<Axes: title={'center': 'Posterior Mean [y2]'}, ylabel='x2'>, <Axes: title={'center': 'Posterior SD [y2]'}>], [<Axes: title={'center': 'Posterior Mean [c1]'}, ylabel='x2'>, <Axes: title={'center': 'Posterior SD [c1]'}>], [<Axes: title={'center': 'Posterior Mean [c2]'}, ylabel='x2'>, <Axes: title={'center': 'Posterior SD [c2]'}>], [<Axes: title={'center': 'Acq. Function'}, ylabel='x2'>, <Axes: >], [<Axes: title={'center': 'Feasibility'}, xlabel='x1', ylabel='x2'>, <Axes: xlabel='x1'>]], dtype=object))
In [7]:
Copied!
X.generator.update_pareto_front_history()
X.generator.pareto_front_history.plot(y="hypervolume", label="Hypervolume")
X.generator.update_pareto_front_history()
X.generator.pareto_front_history.plot(y="hypervolume", label="Hypervolume")
Out[7]:
<Axes: >
In [8]:
Copied!
X.generator.pareto_front_history
X.generator.pareto_front_history
Out[8]:
iteration | hypervolume | n_non_dominated | |
---|---|---|---|
0 | 0 | 0.375000 | 1 |
1 | 1 | 0.500000 | 2 |
2 | 2 | 0.500000 | 2 |
3 | 3 | 0.500000 | 2 |
4 | 4 | 0.500000 | 2 |
5 | 5 | 0.724753 | 3 |
6 | 6 | 0.724753 | 3 |
7 | 7 | 0.883443 | 4 |
8 | 8 | 0.973616 | 4 |
9 | 9 | 1.030639 | 4 |
10 | 10 | 1.030639 | 4 |
11 | 11 | 1.119805 | 5 |
12 | 12 | 1.150877 | 5 |
13 | 13 | 1.150877 | 5 |
14 | 14 | 1.198922 | 4 |
15 | 15 | 1.216676 | 5 |
16 | 16 | 1.241303 | 6 |
17 | 17 | 1.241303 | 6 |
18 | 18 | 1.247229 | 7 |
19 | 19 | 1.247229 | 7 |
20 | 20 | 1.269028 | 7 |
21 | 21 | 1.269554 | 8 |
22 | 22 | 1.269554 | 8 |
23 | 23 | 1.269554 | 8 |
24 | 24 | 1.281141 | 9 |
25 | 25 | 1.281141 | 9 |
26 | 26 | 1.286195 | 10 |
27 | 27 | 1.298656 | 11 |
28 | 28 | 1.304762 | 12 |
29 | 29 | 1.309826 | 13 |
30 | 30 | 1.313248 | 13 |
31 | 31 | 1.313248 | 13 |
In [9]:
Copied!
X.data
X.data
Out[9]:
x1 | x2 | a | y1 | y2 | c1 | c2 | xopt_runtime | xopt_error | |
---|---|---|---|---|---|---|---|---|---|
0 | 1.000000 | 0.750000 | dummy_constant | 1.000000 | 0.750000 | 0.626888 | 0.312500 | 0.000155 | False |
1 | 0.750000 | 1.000000 | dummy_constant | 0.750000 | 1.000000 | 0.626888 | 0.312500 | 0.000135 | False |
2 | 1.399633 | 0.266099 | dummy_constant | 1.399633 | 0.266099 | 1.128863 | 0.864049 | 0.000160 | False |
3 | 2.797334 | 0.852486 | dummy_constant | 2.797334 | 0.852486 | 7.549755 | 5.401989 | 0.000153 | False |
4 | 0.550963 | 0.000000 | dummy_constant | 0.550963 | 0.000000 | -0.796440 | 0.252597 | 0.000146 | False |
5 | 1.107526 | 0.177343 | dummy_constant | 1.107526 | 0.177343 | 0.340533 | 0.473195 | 0.000150 | False |
6 | 0.000000 | 3.141590 | dummy_constant | 0.000000 | 3.141590 | 8.769588 | 7.227998 | 0.000150 | False |
7 | 0.389903 | 1.059314 | dummy_constant | 0.389903 | 1.059314 | 0.193978 | 0.324954 | 0.000153 | False |
8 | 1.016162 | 0.099108 | dummy_constant | 1.016162 | 0.099108 | 0.040887 | 0.427138 | 0.000151 | False |
9 | 0.697516 | 0.821777 | dummy_constant | 0.697516 | 0.821777 | 0.135646 | 0.142553 | 0.000148 | False |
10 | 1.002548 | 0.010400 | dummy_constant | 1.002548 | 0.010400 | -0.093415 | 0.492263 | 0.000148 | False |
11 | 0.172140 | 1.090533 | dummy_constant | 0.172140 | 1.090533 | 0.299304 | 0.456221 | 0.000149 | False |
12 | 0.901752 | 0.540057 | dummy_constant | 0.901752 | 0.540057 | 0.175128 | 0.163009 | 0.000167 | False |
13 | 0.026244 | 1.007488 | dummy_constant | 0.026244 | 1.007488 | -0.075722 | 0.481989 | 0.000149 | False |
14 | 0.093131 | 1.048678 | dummy_constant | 0.093131 | 1.048678 | 0.093100 | 0.466590 | 0.000148 | False |
15 | 1.048155 | 0.059815 | dummy_constant | 1.048155 | 0.059815 | 0.040996 | 0.494236 | 0.000150 | False |
16 | 0.437831 | 0.953846 | dummy_constant | 0.437831 | 0.953846 | 0.019100 | 0.209841 | 0.000149 | False |
17 | 0.039480 | 1.021959 | dummy_constant | 0.039480 | 1.021959 | -0.035556 | 0.484520 | 0.000153 | False |
18 | 0.760770 | 0.779738 | dummy_constant | 0.760770 | 0.779738 | 0.088696 | 0.146254 | 0.000154 | False |
19 | 0.945413 | 0.318184 | dummy_constant | 0.945413 | 0.318184 | -0.051305 | 0.231450 | 0.000152 | False |
20 | 0.056750 | 1.034561 | dummy_constant | 0.056750 | 1.034561 | 0.009575 | 0.482226 | 0.000152 | False |
21 | 1.033318 | 0.063656 | dummy_constant | 1.033318 | 0.063656 | 0.016463 | 0.474824 | 0.000154 | False |
22 | 0.956416 | 0.366340 | dummy_constant | 0.956416 | 0.366340 | -0.041941 | 0.226181 | 0.000150 | False |
23 | 1.031065 | 0.035002 | dummy_constant | 1.031065 | 0.035002 | -0.021298 | 0.498254 | 0.000147 | False |
24 | 0.811105 | 0.651917 | dummy_constant | 0.811105 | 0.651917 | 0.099145 | 0.119865 | 0.000149 | False |
25 | 0.756591 | 0.708810 | dummy_constant | 0.756591 | 0.708810 | -0.011865 | 0.109441 | 0.000149 | False |
26 | 1.000465 | 0.218076 | dummy_constant | 1.000465 | 0.218076 | 0.144246 | 0.329947 | 0.000157 | False |
27 | 0.574784 | 0.852321 | dummy_constant | 0.574784 | 0.852321 | 0.156594 | 0.129723 | 0.000125 | False |
28 | 0.284301 | 0.994790 | dummy_constant | 0.284301 | 0.994790 | 0.095994 | 0.291343 | 0.000149 | False |
29 | 0.045751 | 1.039497 | dummy_constant | 0.045751 | 1.039497 | 0.006405 | 0.497398 | 0.000149 | False |
30 | 1.037538 | 0.052504 | dummy_constant | 1.037538 | 0.052504 | 0.010219 | 0.489200 | 0.000149 | False |
31 | 0.000000 | 1.022215 | dummy_constant | 0.000000 | 1.022215 | -0.055077 | 0.522708 | 0.000142 | False |
In [ ]:
Copied!