Multi-objective Bayesian Optimization¶
TNK function $n=2$ variables: $x_i \in [0, \pi], i=1,2$
Objectives:
- $f_i(x) = x_i$
Constraints:
- $g_1(x) = -x_1^2 -x_2^2 + 1 + 0.1 \cos\left(16 \arctan \frac{x_1}{x_2}\right) \le 0$
- $g_2(x) = (x_1 - 1/2)^2 + (x_2-1/2)^2 \le 0.5$
In [1]:
Copied!
# set values if testing
import os
import pandas as pd
import numpy as np
from xopt import Xopt, Evaluator
from xopt.generators.bayesian import MOBOGenerator
from xopt.resources.test_functions.tnk import evaluate_TNK, tnk_vocs
import matplotlib.pyplot as plt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
N_MC_SAMPLES = 1 if SMOKE_TEST else 128
NUM_RESTARTS = 1 if SMOKE_TEST else 20
N_STEPS = 1 if SMOKE_TEST else 30
MAX_ITER = 1 if SMOKE_TEST else 200
evaluator = Evaluator(function=evaluate_TNK)
print(tnk_vocs.dict())
# set values if testing
import os
import pandas as pd
import numpy as np
from xopt import Xopt, Evaluator
from xopt.generators.bayesian import MOBOGenerator
from xopt.resources.test_functions.tnk import evaluate_TNK, tnk_vocs
import matplotlib.pyplot as plt
# Ignore all warnings
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
N_MC_SAMPLES = 1 if SMOKE_TEST else 128
NUM_RESTARTS = 1 if SMOKE_TEST else 20
N_STEPS = 1 if SMOKE_TEST else 30
MAX_ITER = 1 if SMOKE_TEST else 200
evaluator = Evaluator(function=evaluate_TNK)
print(tnk_vocs.dict())
{'variables': {'x1': (0.0, 3.14159), 'x2': (0.0, 3.14159)}, 'constraints': {'c1': ('GREATER_THAN', 0.0), 'c2': ('LESS_THAN', 0.5)}, 'objectives': {'y1': 'MINIMIZE', 'y2': 'MINIMIZE'}, 'constants': {'a': 'dummy_constant'}, 'observables': []}
In [2]:
Copied!
generator = MOBOGenerator(vocs=tnk_vocs, reference_point={"y1": 1.5, "y2": 1.5})
generator.n_monte_carlo_samples = N_MC_SAMPLES
generator.numerical_optimizer.n_restarts = NUM_RESTARTS
generator.numerical_optimizer.max_iter = MAX_ITER
generator.gp_constructor.use_low_noise_prior = True
X = Xopt(generator=generator, evaluator=evaluator, vocs=tnk_vocs)
X.evaluate_data(pd.DataFrame({"x1": [1.0, 0.75], "x2": [0.75, 1.0]}))
for i in range(N_STEPS):
print(i)
X.step()
generator = MOBOGenerator(vocs=tnk_vocs, reference_point={"y1": 1.5, "y2": 1.5})
generator.n_monte_carlo_samples = N_MC_SAMPLES
generator.numerical_optimizer.n_restarts = NUM_RESTARTS
generator.numerical_optimizer.max_iter = MAX_ITER
generator.gp_constructor.use_low_noise_prior = True
X = Xopt(generator=generator, evaluator=evaluator, vocs=tnk_vocs)
X.evaluate_data(pd.DataFrame({"x1": [1.0, 0.75], "x2": [0.75, 1.0]}))
for i in range(N_STEPS):
print(i)
X.step()
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
In [3]:
Copied!
X.generator.data
X.generator.data
Out[3]:
| x1 | x2 | a | y1 | y2 | c1 | c2 | xopt_runtime | xopt_error | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1.000000 | 0.750000 | dummy_constant | 1.000000 | 0.750000 | 0.626888 | 0.312500 | 0.000200 | False |
| 1 | 0.750000 | 1.000000 | dummy_constant | 0.750000 | 1.000000 | 0.626888 | 0.312500 | 0.000135 | False |
| 2 | 0.180169 | 1.548583 | dummy_constant | 0.180169 | 1.548583 | 1.458435 | 1.201819 | 0.000150 | False |
| 3 | 1.924156 | 2.116347 | dummy_constant | 1.924156 | 2.116347 | 7.108850 | 4.640798 | 0.000145 | False |
| 4 | 0.000000 | 0.148425 | dummy_constant | 0.000000 | 0.148425 | -1.077970 | 0.373605 | 0.000147 | False |
| 5 | 0.000000 | 1.184310 | dummy_constant | 0.000000 | 1.184310 | 0.302591 | 0.718281 | 0.000146 | False |
| 6 | 0.165457 | 1.086007 | dummy_constant | 0.165457 | 1.086007 | 0.281799 | 0.455323 | 0.000148 | False |
| 7 | 1.046943 | 0.464814 | dummy_constant | 1.046943 | 0.464814 | 0.220116 | 0.300384 | 0.000150 | False |
| 8 | 0.711759 | 0.775986 | dummy_constant | 0.711759 | 0.775986 | 0.031649 | 0.121010 | 0.000151 | False |
| 9 | 1.123748 | 0.325700 | dummy_constant | 1.123748 | 0.325700 | 0.388633 | 0.419442 | 0.000157 | False |
| 10 | 1.001257 | 0.147011 | dummy_constant | 1.001257 | 0.147011 | 0.093147 | 0.375860 | 0.000151 | False |
| 11 | 0.959095 | 0.000000 | dummy_constant | 0.959095 | 0.000000 | -0.180137 | 0.460768 | 0.000129 | False |
| 12 | 1.039889 | 0.063793 | dummy_constant | 1.039889 | 0.063793 | 0.029761 | 0.481757 | 0.000150 | False |
| 13 | 0.076191 | 1.040563 | dummy_constant | 0.076191 | 1.040563 | 0.049510 | 0.471823 | 0.000146 | False |
| 14 | 0.497332 | 0.919030 | dummy_constant | 0.497332 | 0.919030 | 0.100183 | 0.175593 | 0.000151 | False |
| 15 | 0.890767 | 0.575425 | dummy_constant | 0.890767 | 0.575425 | 0.221521 | 0.158388 | 0.000152 | False |
| 16 | 0.025857 | 1.010881 | dummy_constant | 0.025857 | 1.010881 | -0.069195 | 0.485811 | 0.000153 | False |
| 17 | 1.059342 | 0.082829 | dummy_constant | 1.059342 | 0.082829 | 0.097390 | 0.486896 | 0.000148 | False |
| 18 | 0.968735 | 0.372650 | dummy_constant | 0.968735 | 0.372650 | -0.014493 | 0.235931 | 0.000148 | False |
| 19 | 1.010516 | 0.018821 | dummy_constant | 1.010516 | 0.018821 | -0.074096 | 0.492160 | 0.000151 | False |
| 20 | 0.780664 | 0.672429 | dummy_constant | 0.780664 | 0.672429 | 0.024392 | 0.108504 | 0.000147 | False |
| 21 | 0.044968 | 1.031170 | dummy_constant | 0.044968 | 1.031170 | -0.011324 | 0.489195 | 0.000150 | False |
| 22 | 0.294111 | 0.976060 | dummy_constant | 0.294111 | 0.976060 | 0.042159 | 0.269024 | 0.000149 | False |
| 23 | 0.062680 | 1.049911 | dummy_constant | 0.062680 | 1.049911 | 0.048405 | 0.493650 | 0.000154 | False |
| 24 | 0.042801 | 1.039112 | dummy_constant | 0.042801 | 1.039112 | 0.002505 | 0.499673 | 0.000151 | False |
| 25 | 0.574103 | 0.870758 | dummy_constant | 0.574103 | 0.870758 | 0.187329 | 0.142953 | 0.000153 | False |
| 26 | 1.001316 | 0.000000 | dummy_constant | 1.001316 | 0.000000 | -0.097366 | 0.501318 | 0.000152 | False |
| 27 | 1.032450 | 0.038947 | dummy_constant | 1.032450 | 0.038947 | -0.014878 | 0.496073 | 0.000151 | False |
| 28 | 0.905340 | 0.460582 | dummy_constant | 0.905340 | 0.460582 | -0.000074 | 0.165854 | 0.000156 | False |
| 29 | 0.674412 | 0.763969 | dummy_constant | 0.674412 | 0.763969 | -0.015977 | 0.100099 | 0.000148 | False |
| 30 | 0.982430 | 0.314489 | dummy_constant | 0.982430 | 0.314489 | 0.039865 | 0.267153 | 0.000148 | False |
| 31 | 0.125124 | 1.024890 | dummy_constant | 0.125124 | 1.024890 | 0.102491 | 0.416041 | 0.000153 | False |
plot results¶
In [4]:
Copied!
fig, ax = plt.subplots()
theta = np.linspace(0, np.pi / 2)
r = np.sqrt(1 + 0.1 * np.cos(16 * theta))
x_1 = r * np.sin(theta)
x_2_lower = r * np.cos(theta)
x_2_upper = (0.5 - (x_1 - 0.5) ** 2) ** 0.5 + 0.5
z = np.zeros_like(x_1)
# ax2.plot(x_1, x_2_lower,'r')
ax.fill_between(x_1, z, x_2_lower, fc="white")
circle = plt.Circle(
(0.5, 0.5), 0.5**0.5, color="r", alpha=0.25, zorder=0, label="Valid Region"
)
ax.add_patch(circle)
history = pd.concat(
[X.data, tnk_vocs.feasibility_data(X.data)], axis=1, ignore_index=False
)
ax.plot(*history[["x1", "x2"]][history["feasible"]].to_numpy().T, ".C1")
ax.plot(*history[["x1", "x2"]][~history["feasible"]].to_numpy().T, ".C2")
ax.set_xlim(0, 3.14)
ax.set_ylim(0, 3.14)
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_aspect("equal")
fig, ax = plt.subplots()
theta = np.linspace(0, np.pi / 2)
r = np.sqrt(1 + 0.1 * np.cos(16 * theta))
x_1 = r * np.sin(theta)
x_2_lower = r * np.cos(theta)
x_2_upper = (0.5 - (x_1 - 0.5) ** 2) ** 0.5 + 0.5
z = np.zeros_like(x_1)
# ax2.plot(x_1, x_2_lower,'r')
ax.fill_between(x_1, z, x_2_lower, fc="white")
circle = plt.Circle(
(0.5, 0.5), 0.5**0.5, color="r", alpha=0.25, zorder=0, label="Valid Region"
)
ax.add_patch(circle)
history = pd.concat(
[X.data, tnk_vocs.feasibility_data(X.data)], axis=1, ignore_index=False
)
ax.plot(*history[["x1", "x2"]][history["feasible"]].to_numpy().T, ".C1")
ax.plot(*history[["x1", "x2"]][~history["feasible"]].to_numpy().T, ".C2")
ax.set_xlim(0, 3.14)
ax.set_ylim(0, 3.14)
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_aspect("equal")
Plot path through input space¶
In [5]:
Copied!
ax = history.plot("x1", "x2")
ax.set_ylim(0, 3.14)
ax.set_xlim(0, 3.14)
ax.set_aspect("equal")
ax = history.plot("x1", "x2")
ax.set_ylim(0, 3.14)
ax.set_xlim(0, 3.14)
ax.set_aspect("equal")
In [6]:
Copied!
## visualize model
X.generator.visualize_model(show_feasibility=True)
## visualize model
X.generator.visualize_model(show_feasibility=True)
Out[6]:
(<Figure size 800x1980 with 22 Axes>,
array([[<Axes: title={'center': 'Posterior Mean [y1]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [y1]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Posterior Mean [y2]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [y2]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Posterior Mean [c1]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [c1]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Posterior Mean [c2]'}, xlabel='x1', ylabel='x2'>,
<Axes: title={'center': 'Posterior SD [c2]'}, xlabel='x1', ylabel='x2'>],
[<Axes: title={'center': 'Acq. Function'}, xlabel='x1', ylabel='x2'>,
<Axes: >],
[<Axes: title={'center': 'Feasibility'}, xlabel='x1', ylabel='x2'>,
<Axes: >]], dtype=object))
In [7]:
Copied!
X.generator.update_pareto_front_history()
X.generator.pareto_front_history.plot(y="hypervolume", label="Hypervolume")
X.generator.update_pareto_front_history()
X.generator.pareto_front_history.plot(y="hypervolume", label="Hypervolume")
Out[7]:
<Axes: >
In [8]:
Copied!
X.generator.pareto_front_history
X.generator.pareto_front_history
Out[8]:
| iteration | hypervolume | n_non_dominated | |
|---|---|---|---|
| 0 | 0 | 0.375000 | 1 |
| 1 | 1 | 0.500000 | 2 |
| 2 | 2 | 0.500000 | 2 |
| 3 | 3 | 0.500000 | 2 |
| 4 | 4 | 0.500000 | 2 |
| 5 | 5 | 0.500000 | 2 |
| 6 | 6 | 0.741997 | 3 |
| 7 | 7 | 0.871203 | 4 |
| 8 | 8 | 0.939062 | 4 |
| 9 | 9 | 0.991403 | 5 |
| 10 | 10 | 1.110593 | 4 |
| 11 | 11 | 1.110593 | 4 |
| 12 | 12 | 1.148882 | 5 |
| 13 | 13 | 1.214721 | 5 |
| 14 | 14 | 1.240781 | 6 |
| 15 | 15 | 1.262908 | 6 |
| 16 | 16 | 1.262908 | 6 |
| 17 | 17 | 1.262908 | 6 |
| 18 | 18 | 1.262908 | 6 |
| 19 | 19 | 1.262908 | 6 |
| 20 | 20 | 1.274310 | 7 |
| 21 | 21 | 1.274310 | 7 |
| 22 | 22 | 1.287418 | 8 |
| 23 | 23 | 1.293499 | 9 |
| 24 | 24 | 1.303123 | 8 |
| 25 | 25 | 1.309768 | 9 |
| 26 | 26 | 1.309768 | 9 |
| 27 | 27 | 1.309768 | 9 |
| 28 | 28 | 1.309768 | 9 |
| 29 | 29 | 1.309768 | 9 |
| 30 | 30 | 1.314681 | 10 |
| 31 | 31 | 1.317084 | 11 |
In [9]:
Copied!
X.data
X.data
Out[9]:
| x1 | x2 | a | y1 | y2 | c1 | c2 | xopt_runtime | xopt_error | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1.000000 | 0.750000 | dummy_constant | 1.000000 | 0.750000 | 0.626888 | 0.312500 | 0.000200 | False |
| 1 | 0.750000 | 1.000000 | dummy_constant | 0.750000 | 1.000000 | 0.626888 | 0.312500 | 0.000135 | False |
| 2 | 0.180169 | 1.548583 | dummy_constant | 0.180169 | 1.548583 | 1.458435 | 1.201819 | 0.000150 | False |
| 3 | 1.924156 | 2.116347 | dummy_constant | 1.924156 | 2.116347 | 7.108850 | 4.640798 | 0.000145 | False |
| 4 | 0.000000 | 0.148425 | dummy_constant | 0.000000 | 0.148425 | -1.077970 | 0.373605 | 0.000147 | False |
| 5 | 0.000000 | 1.184310 | dummy_constant | 0.000000 | 1.184310 | 0.302591 | 0.718281 | 0.000146 | False |
| 6 | 0.165457 | 1.086007 | dummy_constant | 0.165457 | 1.086007 | 0.281799 | 0.455323 | 0.000148 | False |
| 7 | 1.046943 | 0.464814 | dummy_constant | 1.046943 | 0.464814 | 0.220116 | 0.300384 | 0.000150 | False |
| 8 | 0.711759 | 0.775986 | dummy_constant | 0.711759 | 0.775986 | 0.031649 | 0.121010 | 0.000151 | False |
| 9 | 1.123748 | 0.325700 | dummy_constant | 1.123748 | 0.325700 | 0.388633 | 0.419442 | 0.000157 | False |
| 10 | 1.001257 | 0.147011 | dummy_constant | 1.001257 | 0.147011 | 0.093147 | 0.375860 | 0.000151 | False |
| 11 | 0.959095 | 0.000000 | dummy_constant | 0.959095 | 0.000000 | -0.180137 | 0.460768 | 0.000129 | False |
| 12 | 1.039889 | 0.063793 | dummy_constant | 1.039889 | 0.063793 | 0.029761 | 0.481757 | 0.000150 | False |
| 13 | 0.076191 | 1.040563 | dummy_constant | 0.076191 | 1.040563 | 0.049510 | 0.471823 | 0.000146 | False |
| 14 | 0.497332 | 0.919030 | dummy_constant | 0.497332 | 0.919030 | 0.100183 | 0.175593 | 0.000151 | False |
| 15 | 0.890767 | 0.575425 | dummy_constant | 0.890767 | 0.575425 | 0.221521 | 0.158388 | 0.000152 | False |
| 16 | 0.025857 | 1.010881 | dummy_constant | 0.025857 | 1.010881 | -0.069195 | 0.485811 | 0.000153 | False |
| 17 | 1.059342 | 0.082829 | dummy_constant | 1.059342 | 0.082829 | 0.097390 | 0.486896 | 0.000148 | False |
| 18 | 0.968735 | 0.372650 | dummy_constant | 0.968735 | 0.372650 | -0.014493 | 0.235931 | 0.000148 | False |
| 19 | 1.010516 | 0.018821 | dummy_constant | 1.010516 | 0.018821 | -0.074096 | 0.492160 | 0.000151 | False |
| 20 | 0.780664 | 0.672429 | dummy_constant | 0.780664 | 0.672429 | 0.024392 | 0.108504 | 0.000147 | False |
| 21 | 0.044968 | 1.031170 | dummy_constant | 0.044968 | 1.031170 | -0.011324 | 0.489195 | 0.000150 | False |
| 22 | 0.294111 | 0.976060 | dummy_constant | 0.294111 | 0.976060 | 0.042159 | 0.269024 | 0.000149 | False |
| 23 | 0.062680 | 1.049911 | dummy_constant | 0.062680 | 1.049911 | 0.048405 | 0.493650 | 0.000154 | False |
| 24 | 0.042801 | 1.039112 | dummy_constant | 0.042801 | 1.039112 | 0.002505 | 0.499673 | 0.000151 | False |
| 25 | 0.574103 | 0.870758 | dummy_constant | 0.574103 | 0.870758 | 0.187329 | 0.142953 | 0.000153 | False |
| 26 | 1.001316 | 0.000000 | dummy_constant | 1.001316 | 0.000000 | -0.097366 | 0.501318 | 0.000152 | False |
| 27 | 1.032450 | 0.038947 | dummy_constant | 1.032450 | 0.038947 | -0.014878 | 0.496073 | 0.000151 | False |
| 28 | 0.905340 | 0.460582 | dummy_constant | 0.905340 | 0.460582 | -0.000074 | 0.165854 | 0.000156 | False |
| 29 | 0.674412 | 0.763969 | dummy_constant | 0.674412 | 0.763969 | -0.015977 | 0.100099 | 0.000148 | False |
| 30 | 0.982430 | 0.314489 | dummy_constant | 0.982430 | 0.314489 | 0.039865 | 0.267153 | 0.000148 | False |
| 31 | 0.125124 | 1.024890 | dummy_constant | 0.125124 | 1.024890 | 0.102491 | 0.416041 | 0.000153 | False |
In [ ]:
Copied!