Bayesian exploration from YAML¶
In [1]:
Copied!
from xopt import Xopt
# set values if testing
import os
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
YAML = """
generator:
name: bayesian_exploration
evaluator:
function: xopt.resources.test_functions.tnk.evaluate_TNK
vocs:
variables:
x1: [0, 3.14159]
x2: [0, 3.14159]
observables: [y1]
constraints:
c1: [GREATER_THAN, 0]
c2: [LESS_THAN, 0.5]
constants: {a: dummy_constant}
"""
from xopt import Xopt
# set values if testing
import os
import warnings
warnings.filterwarnings("ignore")
SMOKE_TEST = os.environ.get("SMOKE_TEST")
YAML = """
generator:
name: bayesian_exploration
evaluator:
function: xopt.resources.test_functions.tnk.evaluate_TNK
vocs:
variables:
x1: [0, 3.14159]
x2: [0, 3.14159]
observables: [y1]
constraints:
c1: [GREATER_THAN, 0]
c2: [LESS_THAN, 0.5]
constants: {a: dummy_constant}
"""
In [2]:
Copied!
X = Xopt.from_yaml(YAML)
# for testing purposes only
if SMOKE_TEST:
X.generator.numerical_optimizer.n_restarts = 1
X.generator.n_monte_carlo_samples = 1
X
X = Xopt.from_yaml(YAML)
# for testing purposes only
if SMOKE_TEST:
X.generator.numerical_optimizer.n_restarts = 1
X.generator.n_monte_carlo_samples = 1
X
Out[2]:
Xopt ________________________________ Version: 2.6.6.dev25+g041b76137.d20250827 Data size: 0 Config as YAML: dump_file: null evaluator: function: xopt.resources.test_functions.tnk.evaluate_TNK function_kwargs: raise_probability: 0 random_sleep: 0 sleep: 0 max_workers: 1 vectorized: false generator: computation_time: null custom_objective: null fixed_features: null gp_constructor: covar_modules: {} custom_noise_prior: null mean_modules: {} name: standard trainable_mean_keys: [] transform_inputs: true use_cached_hyperparameters: false use_low_noise_prior: false max_travel_distances: null model: null n_candidates: 1 n_interpolate_points: null n_monte_carlo_samples: 128 name: bayesian_exploration numerical_optimizer: max_iter: 2000 max_time: 5.0 n_restarts: 20 name: LBFGS supports_batch_generation: true supports_constraints: true turbo_controller: null use_cuda: false max_evaluations: null serialize_inline: false serialize_torch: false strict: true vocs: constants: a: dummy_constant constraints: c1: - GREATER_THAN - 0.0 c2: - LESS_THAN - 0.5 objectives: {} observables: - y1 variables: x1: - 0.0 - 3.14159 x2: - 0.0 - 3.14159
In [3]:
Copied!
X.random_evaluate(5)
for i in range(5):
print(f"step {i}")
X.step()
X.random_evaluate(5)
for i in range(5):
print(f"step {i}")
X.step()
step 0
step 1
step 2
step 3
step 4
In [4]:
Copied!
print(X.data)
print(X.data)
x1 x2 a y1 y2 c1 c2 \ 0 2.473905 1.393192 dummy_constant 2.473905 1.393192 7.095687 4.694093 1 0.892168 1.585111 dummy_constant 0.892168 1.585111 2.342681 1.331261 2 0.602649 2.244449 dummy_constant 0.602649 2.244449 4.450016 3.053640 3 0.568990 0.454290 dummy_constant 0.568990 0.454290 -0.448516 0.006849 4 2.423605 1.641873 dummy_constant 2.423605 1.641873 7.669083 5.004127 5 0.000000 0.000000 dummy_constant 0.000000 0.000000 -1.100000 0.500000 6 1.265774 0.448666 dummy_constant 1.265774 0.448666 0.736211 0.589044 7 1.068753 0.510666 dummy_constant 1.068753 0.510666 0.336917 0.323594 8 0.000000 1.085932 dummy_constant 0.000000 1.085932 0.079249 0.593317 9 0.297436 1.114847 dummy_constant 0.297436 1.114847 0.382836 0.419069 xopt_runtime xopt_error 0 0.000155 False 1 0.000134 False 2 0.000131 False 3 0.000134 False 4 0.000135 False 5 0.000160 False 6 0.000152 False 7 0.000154 False 8 0.000151 False 9 0.000152 False
In [5]:
Copied!
# plot results
ax = X.data.plot("x1", "x2")
ax.set_aspect("equal")
# plot results
ax = X.data.plot("x1", "x2")
ax.set_aspect("equal")
In [6]:
Copied!
fig, ax = X.generator.visualize_model(show_feasibility=True, n_grid=100)
fig, ax = X.generator.visualize_model(show_feasibility=True, n_grid=100)