VOCS data structure¶
Variables, Objectives, Constraints, and other Settings (VOCS) helps define our optimization problems.
In [1]:
Copied!
from xopt.vocs import VOCS
from xopt.vocs import form_objective_data
import pandas as pd
import numpy as np
from xopt.vocs import VOCS
from xopt.vocs import form_objective_data
import pandas as pd
import numpy as np
In [2]:
Copied!
Y = """
variables:
a: [0, 1e3] # Note that 1e3 usually parses as a str with YAML.
b: [-1, 1]
objectives:
c: maximize
d: minimize
constraints:
e: ['Less_than', 2]
f: ['greater_than', 0]
constants:
g: 1234
"""
vocs = VOCS.from_yaml(Y)
vocs
Y = """
variables:
a: [0, 1e3] # Note that 1e3 usually parses as a str with YAML.
b: [-1, 1]
objectives:
c: maximize
d: minimize
constraints:
e: ['Less_than', 2]
f: ['greater_than', 0]
constants:
g: 1234
"""
vocs = VOCS.from_yaml(Y)
vocs
Out[2]:
VOCS(variables={'a': [0.0, 1000.0], 'b': [-1.0, 1.0]}, constraints={'e': ['LESS_THAN', 2.0], 'f': ['GREATER_THAN', 0.0]}, objectives={'c': 'MAXIMIZE', 'd': 'MINIMIZE'}, constants={'g': 1234}, observables=[])
In [3]:
Copied!
# as dict
dict(vocs)
# as dict
dict(vocs)
Out[3]:
{'variables': {'a': [0.0, 1000.0], 'b': [-1.0, 1.0]}, 'constraints': {'e': ['LESS_THAN', 2.0], 'f': ['GREATER_THAN', 0.0]}, 'objectives': {'c': 'MAXIMIZE', 'd': 'MINIMIZE'}, 'constants': {'g': 1234}, 'observables': []}
In [4]:
Copied!
# re-parse dict
vocs2 = VOCS.from_dict(dict(vocs))
# re-parse dict
vocs2 = VOCS.from_dict(dict(vocs))
In [5]:
Copied!
# Check that these are the same
vocs2 == vocs
# Check that these are the same
vocs2 == vocs
Out[5]:
True
In [6]:
Copied!
# This replaces the old vocs["variables"]
getattr(vocs, "variables")
# This replaces the old vocs["variables"]
getattr(vocs, "variables")
Out[6]:
{'a': [0.0, 1000.0], 'b': [-1.0, 1.0]}
In [7]:
Copied!
vocs.objectives["c"] == "MAXIMIZE"
vocs.objectives["c"] == "MAXIMIZE"
Out[7]:
True
In [8]:
Copied!
# json
vocs.to_json()
# json
vocs.to_json()
Out[8]:
'{"variables":{"a":[0.0,1000.0],"b":[-1.0,1.0]},"constraints":{"e":["LESS_THAN",2.0],"f":["GREATER_THAN",0.0]},"objectives":{"c":"MAXIMIZE","d":"MINIMIZE"},"constants":{"g":1234},"observables":[]}'
Objective Evaluation¶
In [9]:
Copied!
data = pd.DataFrame(vocs.random_inputs(10))
# Add some outputs
data["c"] = data["a"] + data["b"]
data["d"] = data["a"] - data["b"]
data["e"] = data["a"] * 2 + data["b"] * 2
data["f"] = data["a"] * 2 - data["b"] * 2
data.index = np.arange(len(data)) + 5 # custom index
data
data = pd.DataFrame(vocs.random_inputs(10))
# Add some outputs
data["c"] = data["a"] + data["b"]
data["d"] = data["a"] - data["b"]
data["e"] = data["a"] * 2 + data["b"] * 2
data["f"] = data["a"] * 2 - data["b"] * 2
data.index = np.arange(len(data)) + 5 # custom index
data
Out[9]:
a | b | g | c | d | e | f | |
---|---|---|---|---|---|---|---|
5 | 27.126897 | -0.364478 | 1234 | 26.762420 | 27.491375 | 53.524839 | 54.982749 |
6 | 306.471146 | -0.875397 | 1234 | 305.595749 | 307.346543 | 611.191498 | 614.693086 |
7 | 198.513291 | 0.552709 | 1234 | 199.066001 | 197.960582 | 398.132002 | 395.921164 |
8 | 251.735536 | -0.809030 | 1234 | 250.926506 | 252.544566 | 501.853012 | 505.089132 |
9 | 611.565673 | 0.103141 | 1234 | 611.668814 | 611.462532 | 1223.337628 | 1222.925063 |
10 | 299.211735 | 0.779981 | 1234 | 299.991715 | 298.431754 | 599.983431 | 596.863508 |
11 | 837.114707 | -0.883538 | 1234 | 836.231170 | 837.998245 | 1672.462339 | 1675.996490 |
12 | 527.008957 | -0.898737 | 1234 | 526.110220 | 527.907694 | 1052.220439 | 1055.815387 |
13 | 822.891936 | -0.151750 | 1234 | 822.740186 | 823.043685 | 1645.480372 | 1646.087371 |
14 | 580.734676 | -0.739317 | 1234 | 579.995359 | 581.473993 | 1159.990719 | 1162.947985 |
In [10]:
Copied!
vocs.objectives
vocs.objectives
Out[10]:
{'c': 'MAXIMIZE', 'd': 'MINIMIZE'}
In [11]:
Copied!
# These are in standard form for minimization
form_objective_data(vocs.objectives, data)
# These are in standard form for minimization
form_objective_data(vocs.objectives, data)
Out[11]:
objective_c | objective_d | |
---|---|---|
5 | -26.762420 | 27.491375 |
6 | -305.595749 | 307.346543 |
7 | -199.066001 | 197.960582 |
8 | -250.926506 | 252.544566 |
9 | -611.668814 | 611.462532 |
10 | -299.991715 | 298.431754 |
11 | -836.231170 | 837.998245 |
12 | -526.110220 | 527.907694 |
13 | -822.740186 | 823.043685 |
14 | -579.995359 | 581.473993 |
In [12]:
Copied!
# This is also available as a method
vocs.objective_data(data)
# This is also available as a method
vocs.objective_data(data)
Out[12]:
objective_c | objective_d | |
---|---|---|
5 | -26.762420 | 27.491375 |
6 | -305.595749 | 307.346543 |
7 | -199.066001 | 197.960582 |
8 | -250.926506 | 252.544566 |
9 | -611.668814 | 611.462532 |
10 | -299.991715 | 298.431754 |
11 | -836.231170 | 837.998245 |
12 | -526.110220 | 527.907694 |
13 | -822.740186 | 823.043685 |
14 | -579.995359 | 581.473993 |
In [13]:
Copied!
# use the to_numpy() method to convert for low level use.
vocs.objective_data(data).to_numpy()
# use the to_numpy() method to convert for low level use.
vocs.objective_data(data).to_numpy()
Out[13]:
array([[ -26.76241951, 27.49137473], [-305.59574911, 307.34654317], [-199.06600078, 197.96058205], [-250.926506 , 252.54456589], [-611.66881389, 611.4625316 ], [-299.99171527, 298.43175395], [-836.23116963, 837.99824506], [-526.11021958, 527.90769353], [-822.74018604, 823.04368536], [-579.99535931, 581.47399263]])
In [14]:
Copied!
vocs.constraint_data(data)
vocs.constraint_data(data)
Out[14]:
constraint_e | constraint_f | |
---|---|---|
5 | 51.524839 | -54.982749 |
6 | 609.191498 | -614.693086 |
7 | 396.132002 | -395.921164 |
8 | 499.853012 | -505.089132 |
9 | 1221.337628 | -1222.925063 |
10 | 597.983431 | -596.863508 |
11 | 1670.462339 | -1675.996490 |
12 | 1050.220439 | -1055.815387 |
13 | 1643.480372 | -1646.087371 |
14 | 1157.990719 | -1162.947985 |
In [15]:
Copied!
vocs.feasibility_data(data)
vocs.feasibility_data(data)
Out[15]:
feasible_e | feasible_f | feasible | |
---|---|---|---|
5 | False | True | False |
6 | False | True | False |
7 | False | True | False |
8 | False | True | False |
9 | False | True | False |
10 | False | True | False |
11 | False | True | False |
12 | False | True | False |
13 | False | True | False |
14 | False | True | False |
In [16]:
Copied!
# normalize inputs to unit domain [0,1]
normed_data = vocs.normalize_inputs(data)
normed_data
# normalize inputs to unit domain [0,1]
normed_data = vocs.normalize_inputs(data)
normed_data
Out[16]:
a | b | |
---|---|---|
5 | 0.027127 | 0.317761 |
6 | 0.306471 | 0.062301 |
7 | 0.198513 | 0.776355 |
8 | 0.251736 | 0.095485 |
9 | 0.611566 | 0.551571 |
10 | 0.299212 | 0.889990 |
11 | 0.837115 | 0.058231 |
12 | 0.527009 | 0.050632 |
13 | 0.822892 | 0.424125 |
14 | 0.580735 | 0.130342 |
In [17]:
Copied!
# and denormalize
vocs.denormalize_inputs(normed_data)
# and denormalize
vocs.denormalize_inputs(normed_data)
Out[17]:
a | b | |
---|---|---|
5 | 27.126897 | -0.364478 |
6 | 306.471146 | -0.875397 |
7 | 198.513291 | 0.552709 |
8 | 251.735536 | -0.809030 |
9 | 611.565673 | 0.103141 |
10 | 299.211735 | 0.779981 |
11 | 837.114707 | -0.883538 |
12 | 527.008957 | -0.898737 |
13 | 822.891936 | -0.151750 |
14 | 580.734676 | -0.739317 |
Error handling¶
In [18]:
Copied!
Y = """
variables:
a: [0, 1e3] # Note that 1e3 usually parses as a str with YAML.
b: [-1, 1]
objectives:
c: maximize
d: minimize
constraints:
e: ['Less_than', 2]
f: ['greater_than', 0]
constants:
g: 1234
"""
vocs = VOCS.from_yaml(Y)
Y = """
variables:
a: [0, 1e3] # Note that 1e3 usually parses as a str with YAML.
b: [-1, 1]
objectives:
c: maximize
d: minimize
constraints:
e: ['Less_than', 2]
f: ['greater_than', 0]
constants:
g: 1234
"""
vocs = VOCS.from_yaml(Y)
In [19]:
Copied!
d = {"a": [1, 2, 3]}
df = pd.DataFrame(d)
df2 = pd.DataFrame(df).copy()
df2["b"] = np.nan
df2["b"] - 1
d = {"a": [1, 2, 3]}
df = pd.DataFrame(d)
df2 = pd.DataFrame(df).copy()
df2["b"] = np.nan
df2["b"] - 1
Out[19]:
0 NaN 1 NaN 2 NaN Name: b, dtype: float64
In [20]:
Copied!
data["a"] = np.nan
data["a"] = np.nan
In [21]:
Copied!
a = 2
def f(x=a):
return x
a = 99
f()
a = 2
def f(x=a):
return x
a = 99
f()
Out[21]:
2
In [22]:
Copied!
pd.DataFrame(6e66, index=[1, 2, 3], columns=["A"])
pd.DataFrame(6e66, index=[1, 2, 3], columns=["A"])
Out[22]:
A | |
---|---|
1 | 6.000000e+66 |
2 | 6.000000e+66 |
3 | 6.000000e+66 |
In [23]:
Copied!
# These are in standard form for minimization
data = pd.DataFrame({"c": [1, 2, 3, 4]}, index=[9, 3, 4, 5])
form_objective_data(vocs.objectives, data)
# These are in standard form for minimization
data = pd.DataFrame({"c": [1, 2, 3, 4]}, index=[9, 3, 4, 5])
form_objective_data(vocs.objectives, data)
Out[23]:
objective_c | objective_d | |
---|---|---|
9 | -1.0 | inf |
3 | -2.0 | inf |
4 | -3.0 | inf |
5 | -4.0 | inf |