Working with Xopt generators¶
In [1]:
Copied!
# Import the class
from xopt.generators import generators, get_generator
from xopt.vocs import VOCS
from xopt import Xopt, Evaluator, Generator
import math
import numpy as np
# Import the class
from xopt.generators import generators, get_generator
from xopt.vocs import VOCS
from xopt import Xopt, Evaluator, Generator
import math
import numpy as np
In [2]:
Copied!
# named generators
generators.keys()
# named generators
generators.keys()
Out[2]:
dict_keys(['random'])
In [3]:
Copied!
# get default options for the upper confidence bound generator
generator_type = get_generator("upper_confidence_bound")
# get default options for the upper confidence bound generator
generator_type = get_generator("upper_confidence_bound")
In [4]:
Copied!
# define vocs for the problem
vocs = VOCS(
variables={"x": [0, 2 * math.pi]},
objectives={"f": "MINIMIZE"},
)
# define vocs for the problem
vocs = VOCS(
variables={"x": [0, 2 * math.pi]},
objectives={"f": "MINIMIZE"},
)
In [5]:
Copied!
# define a test function to optimize
def test_function(input_dict):
return {"f": np.sin(input_dict["x"])}
# define a test function to optimize
def test_function(input_dict):
return {"f": np.sin(input_dict["x"])}
In [6]:
Copied!
evaluator = Evaluator(function=test_function)
generator = generator_type(vocs=vocs)
X = Xopt(generator=generator, evaluator=evaluator, vocs=vocs)
X
evaluator = Evaluator(function=test_function)
generator = generator_type(vocs=vocs)
X = Xopt(generator=generator, evaluator=evaluator, vocs=vocs)
X
Out[6]:
Xopt
________________________________
Version: 2.6.7.dev55+g7aa2f3618.d20250930
Data size: 0
Config as YAML:
dump_file: null
evaluator:
function: __main__.test_function
function_kwargs: {}
max_workers: 1
vectorized: false
generator:
beta: 2.0
computation_time: null
custom_objective: null
fixed_features: null
gp_constructor:
covar_modules: {}
custom_noise_prior: null
mean_modules: {}
name: standard
trainable_mean_keys: []
transform_inputs: true
use_cached_hyperparameters: false
use_low_noise_prior: false
max_travel_distances: null
model: null
n_candidates: 1
n_interpolate_points: null
n_monte_carlo_samples: 128
name: upper_confidence_bound
numerical_optimizer:
max_iter: 2000
max_time: 5.0
n_restarts: 20
name: LBFGS
supports_batch_generation: true
supports_constraints: true
supports_single_objective: true
turbo_controller: null
use_cuda: false
max_evaluations: null
serialize_inline: false
serialize_torch: false
strict: true
vocs:
constants: {}
constraints: {}
objectives:
f: MINIMIZE
observables: []
variables:
x:
- 0.0
- 6.283185307179586
In [7]:
Copied!
# run the optimization for a couple of iterations (see bayes_opt folder for
# more examples of ucb)
X.random_evaluate(2)
for i in range(4):
X.step()
# run the optimization for a couple of iterations (see bayes_opt folder for
# more examples of ucb)
X.random_evaluate(2)
for i in range(4):
X.step()
In [8]:
Copied!
X.data
X.data
Out[8]:
| x | f | xopt_runtime | xopt_error | |
|---|---|---|---|---|
| 0 | 3.519946 | -3.693910e-01 | 0.000007 | False |
| 1 | 1.156581 | 9.154322e-01 | 0.000003 | False |
| 2 | 4.699289 | -9.999142e-01 | 0.000007 | False |
| 3 | 6.283185 | -2.449294e-16 | 0.000006 | False |
| 4 | 4.692331 | -9.997988e-01 | 0.000006 | False |
| 5 | 4.436321 | -9.621347e-01 | 0.000005 | False |
Write your own generator¶
Here we write a generator that generates the same point every time.
In [9]:
Copied!
class MyGenerator(Generator):
supports_single_objective: bool = True
def generate(self, n_candidates) -> list[dict]:
points = [{"x": 1.0}] * n_candidates
return points
my_generator = MyGenerator(vocs=vocs)
X2 = Xopt(evaluator=evaluator, vocs=vocs, generator=my_generator)
for i in range(4):
X2.step()
class MyGenerator(Generator):
supports_single_objective: bool = True
def generate(self, n_candidates) -> list[dict]:
points = [{"x": 1.0}] * n_candidates
return points
my_generator = MyGenerator(vocs=vocs)
X2 = Xopt(evaluator=evaluator, vocs=vocs, generator=my_generator)
for i in range(4):
X2.step()
In [10]:
Copied!
X2.data
X2.data
Out[10]:
| x | f | xopt_runtime | xopt_error | |
|---|---|---|---|---|
| 0 | 1.0 | 0.841471 | 0.000006 | False |
| 1 | 1.0 | 0.841471 | 0.000005 | False |
| 2 | 1.0 | 0.841471 | 0.000005 | False |
| 3 | 1.0 | 0.841471 | 0.000005 | False |