Skip to content

Vocs

xopt.vocs.VOCS

Bases: XoptBaseModel

Variables, Objectives, Constraints, and other Settings (VOCS) data structure to describe optimization problems.

Attributes:

Name Type Description
variables Dict[str, conlist(float, min_length=2, max_length=2)]

Input variable names with a list of minimum and maximum values.

constraints Dict[str, conlist(Union[float, ConstraintEnum], min_length=2, max_length=2)]

Constraint names with a list of constraint type and value.

objectives Dict[str, ObjectiveEnum]

Objective names with type of objective.

constants Dict[str, Any]

Constant names and values passed to evaluate function.

observables List[str]

Observation names tracked alongside objectives and constraints.

Methods:

Name Description
from_yaml

Create a VOCS object from a YAML string.

as_yaml

Convert the VOCS object to a YAML string.

random_inputs

Uniform sampling of the variables.

convert_dataframe_to_inputs

Extracts only inputs from a dataframe.

convert_numpy_to_inputs

Convert 2D numpy array to list of dicts (inputs) for evaluation.

variable_data

Returns a dataframe containing variables according to vocs.variables in sorted order.

objective_data

Returns a dataframe containing objective data transformed according to vocs.objectives.

constraint_data

Returns a dataframe containing constraint data transformed according to vocs.constraints.

observable_data

Returns a dataframe containing observable data.

feasibility_data

Returns a dataframe containing booleans denoting if a constraint is satisfied or not.

normalize_inputs

Normalize input data (transform data into the range [0,1]) based on the variable ranges defined in the VOCS.

denormalize_inputs

Denormalize input data (transform data from the range [0,1]) based on the variable ranges defined in the VOCS.

validate_input_data

Validates input data. Raises an error if the input data does not satisfy requirements given by vocs.

extract_data

Split dataframe into separate dataframes for variables, objectives and constraints based on vocs.

select_best

Get the best value and point for a given data set based on vocs.

cumulative_optimum

Returns the cumulative optimum for the given DataFrame.

Attributes

xopt.vocs.VOCS.all_names property
all_names

Returns all vocs names (variables, constants, objectives, constraints)

xopt.vocs.VOCS.bounds property
bounds

Returns a bounds array (mins, maxs) of shape (2, n_variables). Arrays of lower and upper bounds can be extracted by: mins, maxs = vocs.bounds

Returns:

Type Description
ndarray

The bounds array.

xopt.vocs.VOCS.constant_names property
constant_names

Returns a sorted list of constant names

xopt.vocs.VOCS.constraint_names property
constraint_names

Returns a sorted list of constraint names

xopt.vocs.VOCS.n_constants property
n_constants

Returns the number of constants

xopt.vocs.VOCS.n_constraints property
n_constraints

Returns the number of constraints

xopt.vocs.VOCS.n_inputs property
n_inputs

Returns the number of inputs (variables and constants)

xopt.vocs.VOCS.n_objectives property
n_objectives

Returns the number of objectives

xopt.vocs.VOCS.n_observables property
n_observables

Returns the number of observables

xopt.vocs.VOCS.n_outputs property
n_outputs

Returns the number of outputs len(objectives + constraints + observables)

Returns:

Type Description
int

The number of outputs.

xopt.vocs.VOCS.n_variables property
n_variables

Returns the number of variables

xopt.vocs.VOCS.objective_names property
objective_names

Returns a sorted list of objective names

xopt.vocs.VOCS.observable_names property
observable_names

Returns a sorted list of observable names

xopt.vocs.VOCS.output_names property
output_names

Returns a list of expected output keys: (objectives + constraints + observables) Each sub-list is sorted.

Returns:

Type Description
List[str]

The list of expected output keys.

xopt.vocs.VOCS.variable_names property
variable_names

Returns a sorted list of variable names

Functions

xopt.vocs.VOCS.as_yaml
as_yaml()

Convert the VOCS object to a YAML string.

Returns:

Type Description
str

The YAML string representation of the VOCS object.

Source code in xopt/vocs.py
260
261
262
263
264
265
266
267
268
269
def as_yaml(self) -> str:
    """
    Convert the VOCS object to a YAML string.

    Returns
    -------
    str
        The YAML string representation of the VOCS object.
    """
    return yaml.dump(self.model_dump(), default_flow_style=None, sort_keys=False)
xopt.vocs.VOCS.constraint_data
constraint_data(data, prefix='constraint_')

Returns a dataframe containing constraint data transformed according to vocs.constraints such that values that satisfy each constraint are negative.

Parameters:

Name Type Description Default
data Union[DataFrame, List[Dict]]

The data to be processed.

required
prefix str

Prefix added to column names. Defaults to "constraint_".

'constraint_'

Returns:

Type Description
DataFrame

The processed dataframe.

Source code in xopt/vocs.py
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
def constraint_data(
    self,
    data: pd.DataFrame | list[dict[str, Any]],
    prefix: str = "constraint_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing constraint data transformed according to
    `vocs.constraints` such that values that satisfy each constraint are negative.

    Parameters
    ----------
    data : Union[pd.DataFrame, List[Dict]]
        The data to be processed.
    prefix : str, optional
        Prefix added to column names. Defaults to "constraint_".

    Returns
    -------
    pd.DataFrame
        The processed dataframe.
    """
    return form_constraint_data(self.constraints, data, prefix)
xopt.vocs.VOCS.convert_dataframe_to_inputs
convert_dataframe_to_inputs(data, include_constants=True)

Extracts only inputs from a dataframe. This will add constants if include_constants is true.

Parameters:

Name Type Description Default
data DataFrame

The dataframe to extract inputs from.

required
include_constants bool

Whether to include constants in the inputs. Defaults to True.

True

Returns:

Type Description
DataFrame

A dataframe containing the extracted inputs.

Source code in xopt/vocs.py
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
def convert_dataframe_to_inputs(
    self, data: pd.DataFrame, include_constants: bool = True
) -> pd.DataFrame:
    """
    Extracts only inputs from a dataframe.
    This will add constants if `include_constants` is true.

    Parameters
    ----------
    data : pd.DataFrame
        The dataframe to extract inputs from.
    include_constants : bool, optional
        Whether to include constants in the inputs. Defaults to True.

    Returns
    -------
    pd.DataFrame
        A dataframe containing the extracted inputs.
    """
    # make sure that the df keys only contain vocs variables
    if not set(self.variable_names) == set(data.keys()):
        raise ValueError(
            "input dataframe column set must equal set of vocs variables"
        )

    # only keep the variables
    inner_copy = data.copy()

    # append constants if requested
    if include_constants:
        constants = self.constants

        for name, val in constants.items():
            inner_copy[name] = val

    return inner_copy
xopt.vocs.VOCS.convert_numpy_to_inputs
convert_numpy_to_inputs(inputs, include_constants=True)

Convert 2D numpy array to list of dicts (inputs) for evaluation. Assumes that the columns of the array match correspond to sorted(self.vocs.variables.keys())

Parameters:

Name Type Description Default
inputs ndarray

The 2D numpy array to convert.

required
include_constants bool

Whether to include constants in the inputs. Defaults to True.

True

Returns:

Type Description
DataFrame

A dataframe containing the converted inputs.

Source code in xopt/vocs.py
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
def convert_numpy_to_inputs(
    self, inputs: np.ndarray, include_constants: bool = True
) -> pd.DataFrame:
    """
    Convert 2D numpy array to list of dicts (inputs) for evaluation.
    Assumes that the columns of the array match correspond to
    `sorted(self.vocs.variables.keys())`

    Parameters
    ----------
    inputs : np.ndarray
        The 2D numpy array to convert.
    include_constants : bool, optional
        Whether to include constants in the inputs. Defaults to True.

    Returns
    -------
    pd.DataFrame
        A dataframe containing the converted inputs.
    """
    df = pd.DataFrame(inputs, columns=self.variable_names)
    return self.convert_dataframe_to_inputs(df, include_constants)
xopt.vocs.VOCS.correct_list_types classmethod
correct_list_types(v)

make sure that constraint list types are correct

Source code in xopt/vocs.py
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
@field_validator("constraints", mode="after")
@classmethod
def correct_list_types(cls, v: dict[str, tuple[str, float]]):
    """make sure that constraint list types are correct"""
    for _, item in v.items():
        if not isinstance(item[0], str):
            raise ValueError(
                "constraint specification list must have the first "
                "element as a string`"
            )

        if not isinstance(item[1], float):
            raise ValueError(
                "constraint specification list must have the second "
                "element as a float"
            )

    return v
xopt.vocs.VOCS.cumulative_optimum
cumulative_optimum(data)

Returns the cumulative optimum for the given DataFrame.

Parameters:

Name Type Description Default
data DataFrame

Data for which the cumulative optimum shall be calculated.

required

Returns:

Type Description
DataFrame

Cumulative optimum for the given DataFrame.

Source code in xopt/vocs.py
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def cumulative_optimum(self, data: pd.DataFrame) -> pd.DataFrame:
    """
    Returns the cumulative optimum for the given DataFrame.

    Parameters
    ----------
    data: DataFrame
        Data for which the cumulative optimum shall be calculated.

    Returns
    -------
    DataFrame
        Cumulative optimum for the given DataFrame.

    """
    if not self.objectives:
        raise RuntimeError("No objectives defined.")
    if data.empty:
        return pd.DataFrame()
    obj_name = self.objective_names[0]
    obj = self.objectives[obj_name]
    get_opt = np.nanmax if obj == "MAXIMIZE" else np.nanmin
    feasible = self.feasibility_data(data)["feasible"]
    feasible_obj_values = [
        data[obj_name].values[i] if feasible[i] else np.nan
        for i in range(len(data))
    ]
    cumulative_optimum = np.array(
        [get_opt(feasible_obj_values[: i + 1]) for i in range(len(data))]
    )
    return pd.DataFrame({f"best_{obj_name}": cumulative_optimum}, index=data.index)
xopt.vocs.VOCS.denormalize_inputs
denormalize_inputs(input_points)

Denormalize input data (transform data from the range [0,1]) based on the variable ranges defined in the VOCS.

Parameters:

Name Type Description Default
input_points DataFrame

A DataFrame containing normalized input data in the range [0,1].

required

Returns:

Type Description
DataFrame

A DataFrame with denormalized input data corresponding to the specified variable ranges. Contains columns equal to the intersection between input_points and vocs.variable_names.

Notes

If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.

Source code in xopt/vocs.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
def denormalize_inputs(self, input_points: pd.DataFrame) -> pd.DataFrame:
    """
    Denormalize input data (transform data from the range [0,1]) based on the
    variable ranges defined in the VOCS.

    Parameters
    ----------
    input_points : pd.DataFrame
        A DataFrame containing normalized input data in the range [0,1].

    Returns
    -------
    pd.DataFrame
        A DataFrame with denormalized input data corresponding to the
        specified variable ranges. Contains columns equal to the intersection
        between `input_points` and `vocs.variable_names`.

    Notes
    -----

    If the input DataFrame is empty or no variable information is available in
    the VOCS, an empty DataFrame is returned.

    """
    denormed_data = {}
    for name in self.variable_names:
        if name in input_points.columns:
            width = self.variables[name][1] - self.variables[name][0]
            denormed_data[name] = (
                input_points[name] * width + self.variables[name][0]
            )

    if len(denormed_data):
        return pd.DataFrame(denormed_data)
    else:
        return pd.DataFrame([])
xopt.vocs.VOCS.extract_data
extract_data(data, return_raw=False, return_valid=False)

split dataframe into seperate dataframes for variables, objectives and constraints based on vocs - objective data is transformed based on vocs.objectives properties

Returns:

Type Description
variable_data : DataFrame
Dataframe containing variable data

objective_data : DataFrame Dataframe containing objective data constraint_data : DataFrame Dataframe containing constraint data observable_data : DataFrame Dataframe containing observable data

Source code in xopt/vocs.py
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
def extract_data(self, data: pd.DataFrame, return_raw=False, return_valid=False):
    """
    split dataframe into seperate dataframes for variables, objectives and
    constraints based on vocs - objective data is transformed based on
    `vocs.objectives` properties

    Parameters
    ----------
        data: DataFrame
            Dataframe to be split
        return_raw : bool, optional
            If True, return untransformed objective data
        return_valid : bool, optional
            If True, only return data that satisfies all of the contraint
            conditions.

    Returns
    -------
        variable_data : DataFrame
            Dataframe containing variable data
        objective_data : DataFrame
            Dataframe containing objective data
        constraint_data : DataFrame
            Dataframe containing constraint data
        observable_data : DataFrame
            Dataframe containing observable data
    """
    variable_data = self.variable_data(data, "")
    objective_data = self.objective_data(data, "", return_raw)
    constraint_data = self.constraint_data(data, "")
    observable_data = self.observable_data(data, "")

    if return_valid:
        feasible_status = self.feasibility_data(data)["feasible"]
        return (
            variable_data.loc[feasible_status, :],
            objective_data.loc[feasible_status, :],
            constraint_data.loc[feasible_status, :],
            observable_data.loc[feasible_status, :],
        )

    return variable_data, objective_data, constraint_data, observable_data
xopt.vocs.VOCS.feasibility_data
feasibility_data(data, prefix='feasible_')

Returns a dataframe containing booleans denoting if a constraint is satisfied or not. Returned dataframe also contains a column feasible which denotes if all constraints are satisfied.

Parameters:

Name Type Description Default
data Union[DataFrame, List[Dict]]

The data to be processed.

required
prefix str

Prefix added to column names. Defaults to "feasible_".

'feasible_'

Returns:

Type Description
DataFrame

The processed dataframe.

Source code in xopt/vocs.py
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
def feasibility_data(
    self,
    data: pd.DataFrame | list[dict[str, Any]],
    prefix: str = "feasible_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing booleans denoting if a constraint is satisfied or
    not. Returned dataframe also contains a column `feasible` which denotes if
    all constraints are satisfied.

    Parameters
    ----------
    data : Union[pd.DataFrame, List[Dict]]
        The data to be processed.
    prefix : str, optional
        Prefix added to column names. Defaults to "feasible_".

    Returns
    -------
    pd.DataFrame
        The processed dataframe.
    """
    return form_feasibility_data(self.constraints, data, prefix)
xopt.vocs.VOCS.from_yaml classmethod
from_yaml(yaml_text)

Create a VOCS object from a YAML string.

Parameters:

Name Type Description Default
yaml_text str

The YAML string to create the VOCS object from.

required

Returns:

Type Description
VOCS

The created VOCS object.

Source code in xopt/vocs.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
@classmethod
def from_yaml(cls, yaml_text: str) -> "VOCS":
    """
    Create a VOCS object from a YAML string.

    Parameters
    ----------
    yaml_text : str
        The YAML string to create the VOCS object from.

    Returns
    -------
    VOCS
        The created VOCS object.
    """
    loaded = yaml.safe_load(yaml_text)
    return cls(**loaded)
xopt.vocs.VOCS.grid_inputs
grid_inputs(n, custom_bounds=None, include_constants=True)

Generate a meshgrid of inputs.

Parameters:

Name Type Description Default
n Union[int, Dict[str, int]]

Number of points to generate along each axis. If an integer is provided, the same number of points is used for all variables. If a dictionary is provided, it should have variable names as keys and the number of points as values.

required
custom_bounds dict

Custom bounds for the variables. If None, the default bounds from self.variables are used. The dictionary should have variable names as keys and a list of two values [min, max] as values.

None
include_constants bool

If True, include constant values from self.constants in the output DataFrame.

True

Returns:

Type Description
DataFrame

A DataFrame containing the generated meshgrid of inputs. Each column corresponds to a variable, and each row represents a point in the grid.

Raises:

Type Description
TypeError

If custom_bounds is not a dictionary.

ValueError

If custom_bounds are not valid or are outside the domain of self.variables.

Warns:

Type Description
RuntimeWarning

If custom_bounds are clipped by the bounds of self.variables.

Notes

The function generates a meshgrid of inputs based on the specified bounds. If custom_bounds are provided, they are validated and clipped to ensure they lie within the domain of self.variables. The resulting meshgrid is flattened and returned as a DataFrame. If include_constants is True, constant values from self.constants are added to the DataFrame.

Source code in xopt/vocs.py
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
def grid_inputs(
    self,
    n: int | dict[str, int],
    custom_bounds: dict[str, list[float]] | None = None,
    include_constants: bool = True,
) -> pd.DataFrame:
    """
    Generate a meshgrid of inputs.

    Parameters
    ----------
    n : Union[int, Dict[str, int]]
        Number of points to generate along each axis. If an integer is provided, the same number of points
        is used for all variables. If a dictionary is provided, it should have variable names as keys and
        the number of points as values.
    custom_bounds : dict, optional
        Custom bounds for the variables. If None, the default bounds from `self.variables` are used.
        The dictionary should have variable names as keys and a list of two values [min, max] as values.
    include_constants : bool, optional
        If True, include constant values from `self.constants` in the output DataFrame.

    Returns
    -------
    pd.DataFrame
        A DataFrame containing the generated meshgrid of inputs. Each column corresponds to a variable,
        and each row represents a point in the grid.

    Raises
    ------
    TypeError
        If `custom_bounds` is not a dictionary.
    ValueError
        If `custom_bounds` are not valid or are outside the domain of `self.variables`.

    Warns
    -----
    RuntimeWarning
        If `custom_bounds` are clipped by the bounds of `self.variables`.

    Notes
    -----
    The function generates a meshgrid of inputs based on the specified bounds. If `custom_bounds` are provided,
    they are validated and clipped to ensure they lie within the domain of `self.variables`. The resulting meshgrid
    is flattened and returned as a DataFrame. If `include_constants` is True, constant values from `self.constants`
    are added to the DataFrame.
    """
    bounds = clip_variable_bounds(self, custom_bounds)

    grid_axes = []
    for key, val in bounds.items():
        if isinstance(n, int):
            num_points = n
        elif isinstance(n, dict) and key in n:
            num_points = n[key]
        else:
            raise ValueError(
                f"Number of points for variable '{key}' not specified."
            )
        grid_axes.append(np.linspace(val[0], val[1], num_points))

    mesh = np.meshgrid(*grid_axes)
    inputs = {key: mesh[i].flatten() for i, key in enumerate(bounds.keys())}

    if include_constants:
        for key, value in self.constants.items():
            inputs[key] = np.full_like(next(iter(inputs.values())), value)

    return pd.DataFrame(inputs)
xopt.vocs.VOCS.normalize_inputs
normalize_inputs(input_points)

Normalize input data (transform data into the range [0,1]) based on the variable ranges defined in the VOCS.

Parameters:

Name Type Description Default
input_points DataFrame

A DataFrame containing input data to be normalized.

required

Returns:

Type Description
DataFrame

A DataFrame with input data in the range [0,1] corresponding to the specified variable ranges. Contains columns equal to the intersection between input_points and vocs.variable_names.

Notes

If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.

Source code in xopt/vocs.py
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
def normalize_inputs(self, input_points: pd.DataFrame) -> pd.DataFrame:
    """
    Normalize input data (transform data into the range [0,1]) based on the
    variable ranges defined in the VOCS.

    Parameters
    ----------
    input_points : pd.DataFrame
        A DataFrame containing input data to be normalized.

    Returns
    -------
    pd.DataFrame
        A DataFrame with input data in the range [0,1] corresponding to the
        specified variable ranges. Contains columns equal to the intersection
        between `input_points` and `vocs.variable_names`.

    Notes
    -----

    If the input DataFrame is empty or no variable information is available in
    the VOCS, an empty DataFrame is returned.

    """
    normed_data = {}
    for name in self.variable_names:
        if name in input_points.columns:
            width = self.variables[name][1] - self.variables[name][0]
            normed_data[name] = (
                input_points[name] - self.variables[name][0]
            ) / width

    if len(normed_data):
        return pd.DataFrame(normed_data)
    else:
        return pd.DataFrame([])
xopt.vocs.VOCS.objective_data
objective_data(data, prefix='objective_', return_raw=False)

Returns a dataframe containing objective data transformed according to vocs.objectives such that we always assume minimization.

Parameters:

Name Type Description Default
data Union[DataFrame, List[Dict]]

The data to be processed.

required
prefix str

Prefix added to column names. Defaults to "objective_".

'objective_'
return_raw bool

Whether to return raw objective data. Defaults to False.

False

Returns:

Type Description
DataFrame

The processed dataframe.

Source code in xopt/vocs.py
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
def objective_data(
    self,
    data: pd.DataFrame | list[dict[str, Any]],
    prefix: str = "objective_",
    return_raw: bool = False,
) -> pd.DataFrame:
    """
    Returns a dataframe containing objective data transformed according to
    `vocs.objectives` such that we always assume minimization.

    Parameters
    ----------
    data : Union[pd.DataFrame, List[Dict]]
        The data to be processed.
    prefix : str, optional
        Prefix added to column names. Defaults to "objective_".
    return_raw : bool, optional
        Whether to return raw objective data. Defaults to False.

    Returns
    -------
    pd.DataFrame
        The processed dataframe.
    """
    return form_objective_data(self.objectives, data, prefix, return_raw)
xopt.vocs.VOCS.observable_data
observable_data(data, prefix='observable_')

Returns a dataframe containing observable data.

Parameters:

Name Type Description Default
data Union[DataFrame, List[Dict]]

The data to be processed.

required
prefix str

Prefix added to column names. Defaults to "observable_".

'observable_'

Returns:

Type Description
DataFrame

The processed dataframe.

Source code in xopt/vocs.py
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def observable_data(
    self,
    data: pd.DataFrame | list[dict[str, Any]],
    prefix: str = "observable_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing observable data.

    Parameters
    ----------
    data : Union[pd.DataFrame, List[Dict]]
        The data to be processed.
    prefix : str, optional
        Prefix added to column names. Defaults to "observable_".

    Returns
    -------
    pd.DataFrame
        The processed dataframe.
    """
    return form_observable_data(self.observable_names, data, prefix)
xopt.vocs.VOCS.random_inputs
random_inputs(n=None, custom_bounds=None, include_constants=True, seed=None)

Uniform sampling of the variables.

Returns a dict of inputs.

If include_constants, the vocs.constants are added to the dict.

Parameters:

Name Type Description Default
n int

Number of samples to generate. Defaults to None.

None
custom_bounds dict

Custom bounds for the variables. Defaults to None.

None
include_constants bool

Whether to include constants in the inputs. Defaults to True.

True
seed int

Seed for the random number generator. Defaults to None.

None

Returns:

Type Description
list[dict]

A list of dictionaries containing the sampled inputs.

Source code in xopt/vocs.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
def random_inputs(
    self,
    n: int | None = None,
    custom_bounds: dict[str, list[float]] | None = None,
    include_constants: bool = True,
    seed: int | None = None,
) -> list[dict]:
    """
    Uniform sampling of the variables.

    Returns a dict of inputs.

    If include_constants, the vocs.constants are added to the dict.

    Parameters
    ----------
    n : int, optional
        Number of samples to generate. Defaults to None.
    custom_bounds : dict, optional
        Custom bounds for the variables. Defaults to None.
    include_constants : bool, optional
        Whether to include constants in the inputs. Defaults to True.
    seed : int, optional
        Seed for the random number generator. Defaults to None.

    Returns
    -------
    list[dict]
        A list of dictionaries containing the sampled inputs.
    """
    inputs = {}
    if seed is None:
        rng_sample_function = np.random.random
    else:
        rng = np.random.default_rng(seed=seed)
        rng_sample_function = rng.random

    bounds = clip_variable_bounds(self, custom_bounds)

    for key, val in bounds.items():  # No need to sort here
        a, b = val
        x = rng_sample_function(n)
        inputs[key] = x * a + (1 - x) * b

    # Constants
    if include_constants and self.constants is not None:
        inputs.update(self.constants)

    if n is None:
        return [inputs]
    else:
        return pd.DataFrame(inputs).to_dict("records")
xopt.vocs.VOCS.select_best
select_best(data, n=1)

get the best value and point for a given data set based on vocs - does not work for multi-objective problems - data that violates any constraints is ignored

Returns:

Type Description
index: index of best point

value: value of best point params: input parameters that give the best point

Source code in xopt/vocs.py
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
def select_best(self, data: pd.DataFrame, n: int = 1):
    """
    get the best value and point for a given data set based on vocs
    - does not work for multi-objective problems
    - data that violates any constraints is ignored

    Parameters
    ----------
        data: DataFrame
            Dataframe to select best point from
        n: int, optional
            Number of best points to return

    Returns
    -------
        index: index of best point
        value: value of best point
        params: input parameters that give the best point
    """
    if self.n_objectives != 1:
        raise NotImplementedError(
            "cannot select best point when n_objectives is not 1"
        )

    if data.empty:
        raise RuntimeError("cannot select best point if dataframe is empty")

    feasible_data = self.feasibility_data(data)
    if feasible_data.empty or (~feasible_data["feasible"]).all():
        raise FeasibilityError(
            "Cannot select best point if no points satisfy the given constraints. "
        )

    ascending_flag = {"MINIMIZE": True, "MAXIMIZE": False}
    obj = self.objectives[self.objective_names[0]]
    obj_name = self.objective_names[0]

    res = (
        data.loc[feasible_data["feasible"], :]
        .sort_values(obj_name, ascending=ascending_flag[obj])
        .loc[:, obj_name]
        .iloc[:n]
    )

    params = data.loc[res.index, self.variable_names].to_dict(orient="records")[0]

    return (
        res.index.to_numpy(copy=True, dtype=int),
        res.to_numpy(copy=True, dtype=float),
        params,
    )
xopt.vocs.VOCS.validate_input_data
validate_input_data(input_points)

Validates input data. Raises an error if the input data does not satisfy requirements given by vocs.

Returns:

Type Description
None

Raises:

Type Description
ValueError: if input data does not satisfy requirements.
Source code in xopt/vocs.py
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
def validate_input_data(self, input_points: pd.DataFrame) -> None:
    """
    Validates input data. Raises an error if the input data does not satisfy
    requirements given by vocs.

    Parameters
    ----------
        input_points : DataFrame
            Input data to be validated.

    Returns
    -------
        None

    Raises
    ------
        ValueError: if input data does not satisfy requirements.
    """
    validate_input_data(self, input_points)
xopt.vocs.VOCS.variable_data
variable_data(data, prefix='variable_')

Returns a dataframe containing variables according to vocs.variables in sorted order.

Parameters:

Name Type Description Default
data Union[DataFrame, List[Dict]]

The data to be processed.

required
prefix str

Prefix added to column names. Defaults to "variable_".

'variable_'

Returns:

Type Description
DataFrame

The processed dataframe.

Source code in xopt/vocs.py
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def variable_data(
    self,
    data: pd.DataFrame | list[dict[str, Any]],
    prefix: str = "variable_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing variables according to `vocs.variables` in sorted order.

    Parameters
    ----------
    data : Union[pd.DataFrame, List[Dict]]
        The data to be processed.
    prefix : str, optional
        Prefix added to column names. Defaults to "variable_".

    Returns
    -------
    pd.DataFrame
        The processed dataframe.
    """
    return form_variable_data(self.variables, data, prefix=prefix)