Vocs
xopt.vocs.VOCS ¶
Bases: XoptBaseModel
Variables, Objectives, Constraints, and other Settings (VOCS) data structure to describe optimization problems.
Attributes:
| Name | Type | Description |
|---|---|---|
variables |
Dict[str, conlist(float, min_length=2, max_length=2)]
|
Input variable names with a list of minimum and maximum values. |
constraints |
Dict[str, conlist(Union[float, ConstraintEnum], min_length=2, max_length=2)]
|
Constraint names with a list of constraint type and value. |
objectives |
Dict[str, ObjectiveEnum]
|
Objective names with type of objective. |
constants |
Dict[str, Any]
|
Constant names and values passed to evaluate function. |
observables |
List[str]
|
Observation names tracked alongside objectives and constraints. |
Methods:
| Name | Description |
|---|---|
from_yaml |
Create a VOCS object from a YAML string. |
as_yaml |
Convert the VOCS object to a YAML string. |
random_inputs |
Uniform sampling of the variables. |
convert_dataframe_to_inputs |
Extracts only inputs from a dataframe. |
convert_numpy_to_inputs |
Convert 2D numpy array to list of dicts (inputs) for evaluation. |
variable_data |
Returns a dataframe containing variables according to |
objective_data |
Returns a dataframe containing objective data transformed according to |
constraint_data |
Returns a dataframe containing constraint data transformed according to |
observable_data |
Returns a dataframe containing observable data. |
feasibility_data |
Returns a dataframe containing booleans denoting if a constraint is satisfied or not. |
normalize_inputs |
Normalize input data (transform data into the range [0,1]) based on the variable ranges defined in the VOCS. |
denormalize_inputs |
Denormalize input data (transform data from the range [0,1]) based on the variable ranges defined in the VOCS. |
validate_input_data |
Validates input data. Raises an error if the input data does not satisfy requirements given by vocs. |
extract_data |
Split dataframe into separate dataframes for variables, objectives and constraints based on vocs. |
select_best |
Get the best value and point for a given data set based on vocs. |
cumulative_optimum |
Returns the cumulative optimum for the given DataFrame. |
Attributes¶
xopt.vocs.VOCS.all_names
property
¶
all_names
Returns all vocs names (variables, constants, objectives, constraints)
xopt.vocs.VOCS.bounds
property
¶
bounds
Returns a bounds array (mins, maxs) of shape (2, n_variables). Arrays of lower and upper bounds can be extracted by: mins, maxs = vocs.bounds
Returns:
| Type | Description |
|---|---|
ndarray
|
The bounds array. |
xopt.vocs.VOCS.constraint_names
property
¶
constraint_names
Returns a sorted list of constraint names
xopt.vocs.VOCS.n_outputs
property
¶
n_outputs
Returns the number of outputs len(objectives + constraints + observables)
Returns:
| Type | Description |
|---|---|
int
|
The number of outputs. |
xopt.vocs.VOCS.observable_names
property
¶
observable_names
Returns a sorted list of observable names
xopt.vocs.VOCS.output_names
property
¶
output_names
Returns a list of expected output keys: (objectives + constraints + observables) Each sub-list is sorted.
Returns:
| Type | Description |
|---|---|
List[str]
|
The list of expected output keys. |
Functions¶
xopt.vocs.VOCS.as_yaml ¶
as_yaml()
Convert the VOCS object to a YAML string.
Returns:
| Type | Description |
|---|---|
str
|
The YAML string representation of the VOCS object. |
Source code in xopt/vocs.py
260 261 262 263 264 265 266 267 268 269 | |
xopt.vocs.VOCS.constraint_data ¶
constraint_data(data, prefix='constraint_')
Returns a dataframe containing constraint data transformed according to
vocs.constraints such that values that satisfy each constraint are negative.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Union[DataFrame, List[Dict]]
|
The data to be processed. |
required |
prefix
|
str
|
Prefix added to column names. Defaults to "constraint_". |
'constraint_'
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The processed dataframe. |
Source code in xopt/vocs.py
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | |
xopt.vocs.VOCS.convert_dataframe_to_inputs ¶
convert_dataframe_to_inputs(data, include_constants=True)
Extracts only inputs from a dataframe.
This will add constants if include_constants is true.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
DataFrame
|
The dataframe to extract inputs from. |
required |
include_constants
|
bool
|
Whether to include constants in the inputs. Defaults to True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the extracted inputs. |
Source code in xopt/vocs.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | |
xopt.vocs.VOCS.convert_numpy_to_inputs ¶
convert_numpy_to_inputs(inputs, include_constants=True)
Convert 2D numpy array to list of dicts (inputs) for evaluation.
Assumes that the columns of the array match correspond to
sorted(self.vocs.variables.keys())
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
ndarray
|
The 2D numpy array to convert. |
required |
include_constants
|
bool
|
Whether to include constants in the inputs. Defaults to True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the converted inputs. |
Source code in xopt/vocs.py
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | |
xopt.vocs.VOCS.correct_list_types
classmethod
¶
correct_list_types(v)
make sure that constraint list types are correct
Source code in xopt/vocs.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | |
xopt.vocs.VOCS.cumulative_optimum ¶
cumulative_optimum(data)
Returns the cumulative optimum for the given DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
DataFrame
|
Data for which the cumulative optimum shall be calculated. |
required |
Returns:
| Type | Description |
|---|---|
DataFrame
|
Cumulative optimum for the given DataFrame. |
Source code in xopt/vocs.py
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | |
xopt.vocs.VOCS.denormalize_inputs ¶
denormalize_inputs(input_points)
Denormalize input data (transform data from the range [0,1]) based on the variable ranges defined in the VOCS.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_points
|
DataFrame
|
A DataFrame containing normalized input data in the range [0,1]. |
required |
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame with denormalized input data corresponding to the
specified variable ranges. Contains columns equal to the intersection
between |
Notes
If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.
Source code in xopt/vocs.py
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | |
xopt.vocs.VOCS.extract_data ¶
extract_data(data, return_raw=False, return_valid=False)
split dataframe into seperate dataframes for variables, objectives and
constraints based on vocs - objective data is transformed based on
vocs.objectives properties
Returns:
| Type | Description |
|---|---|
variable_data : DataFrame
|
objective_data : DataFrame Dataframe containing objective data constraint_data : DataFrame Dataframe containing constraint data observable_data : DataFrame Dataframe containing observable data |
Source code in xopt/vocs.py
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 | |
xopt.vocs.VOCS.feasibility_data ¶
feasibility_data(data, prefix='feasible_')
Returns a dataframe containing booleans denoting if a constraint is satisfied or
not. Returned dataframe also contains a column feasible which denotes if
all constraints are satisfied.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Union[DataFrame, List[Dict]]
|
The data to be processed. |
required |
prefix
|
str
|
Prefix added to column names. Defaults to "feasible_". |
'feasible_'
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The processed dataframe. |
Source code in xopt/vocs.py
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | |
xopt.vocs.VOCS.from_yaml
classmethod
¶
from_yaml(yaml_text)
Create a VOCS object from a YAML string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
yaml_text
|
str
|
The YAML string to create the VOCS object from. |
required |
Returns:
| Type | Description |
|---|---|
VOCS
|
The created VOCS object. |
Source code in xopt/vocs.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
xopt.vocs.VOCS.grid_inputs ¶
grid_inputs(n, custom_bounds=None, include_constants=True)
Generate a meshgrid of inputs.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n
|
Union[int, Dict[str, int]]
|
Number of points to generate along each axis. If an integer is provided, the same number of points is used for all variables. If a dictionary is provided, it should have variable names as keys and the number of points as values. |
required |
custom_bounds
|
dict
|
Custom bounds for the variables. If None, the default bounds from |
None
|
include_constants
|
bool
|
If True, include constant values from |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame containing the generated meshgrid of inputs. Each column corresponds to a variable, and each row represents a point in the grid. |
Raises:
| Type | Description |
|---|---|
TypeError
|
If |
ValueError
|
If |
Warns:
| Type | Description |
|---|---|
RuntimeWarning
|
If |
Notes
The function generates a meshgrid of inputs based on the specified bounds. If custom_bounds are provided,
they are validated and clipped to ensure they lie within the domain of self.variables. The resulting meshgrid
is flattened and returned as a DataFrame. If include_constants is True, constant values from self.constants
are added to the DataFrame.
Source code in xopt/vocs.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | |
xopt.vocs.VOCS.normalize_inputs ¶
normalize_inputs(input_points)
Normalize input data (transform data into the range [0,1]) based on the variable ranges defined in the VOCS.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_points
|
DataFrame
|
A DataFrame containing input data to be normalized. |
required |
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame with input data in the range [0,1] corresponding to the
specified variable ranges. Contains columns equal to the intersection
between |
Notes
If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.
Source code in xopt/vocs.py
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 | |
xopt.vocs.VOCS.objective_data ¶
objective_data(data, prefix='objective_', return_raw=False)
Returns a dataframe containing objective data transformed according to
vocs.objectives such that we always assume minimization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Union[DataFrame, List[Dict]]
|
The data to be processed. |
required |
prefix
|
str
|
Prefix added to column names. Defaults to "objective_". |
'objective_'
|
return_raw
|
bool
|
Whether to return raw objective data. Defaults to False. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The processed dataframe. |
Source code in xopt/vocs.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | |
xopt.vocs.VOCS.observable_data ¶
observable_data(data, prefix='observable_')
Returns a dataframe containing observable data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Union[DataFrame, List[Dict]]
|
The data to be processed. |
required |
prefix
|
str
|
Prefix added to column names. Defaults to "observable_". |
'observable_'
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The processed dataframe. |
Source code in xopt/vocs.py
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | |
xopt.vocs.VOCS.random_inputs ¶
random_inputs(n=None, custom_bounds=None, include_constants=True, seed=None)
Uniform sampling of the variables.
Returns a dict of inputs.
If include_constants, the vocs.constants are added to the dict.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n
|
int
|
Number of samples to generate. Defaults to None. |
None
|
custom_bounds
|
dict
|
Custom bounds for the variables. Defaults to None. |
None
|
include_constants
|
bool
|
Whether to include constants in the inputs. Defaults to True. |
True
|
seed
|
int
|
Seed for the random number generator. Defaults to None. |
None
|
Returns:
| Type | Description |
|---|---|
list[dict]
|
A list of dictionaries containing the sampled inputs. |
Source code in xopt/vocs.py
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | |
xopt.vocs.VOCS.select_best ¶
select_best(data, n=1)
get the best value and point for a given data set based on vocs - does not work for multi-objective problems - data that violates any constraints is ignored
Returns:
| Type | Description |
|---|---|
index: index of best point
|
value: value of best point params: input parameters that give the best point |
Source code in xopt/vocs.py
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 | |
xopt.vocs.VOCS.validate_input_data ¶
validate_input_data(input_points)
Validates input data. Raises an error if the input data does not satisfy requirements given by vocs.
Returns:
| Type | Description |
|---|---|
None
|
|
Raises:
| Type | Description |
|---|---|
ValueError: if input data does not satisfy requirements.
|
|
Source code in xopt/vocs.py
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | |
xopt.vocs.VOCS.variable_data ¶
variable_data(data, prefix='variable_')
Returns a dataframe containing variables according to vocs.variables in sorted order.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Union[DataFrame, List[Dict]]
|
The data to be processed. |
required |
prefix
|
str
|
Prefix added to column names. Defaults to "variable_". |
'variable_'
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The processed dataframe. |
Source code in xopt/vocs.py
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | |