Skip to content

Vocs

xopt.vocs.VOCS

Bases: XoptBaseModel

Variables, Objectives, Constraints, and other Settings (VOCS) data structure to describe optimization problems.

Attributes

xopt.vocs.VOCS.all_names property
all_names

Returns all vocs names (variables, constants, objectives, constraints)

xopt.vocs.VOCS.bounds property
bounds

Returns a bounds array (mins, maxs) of shape (2, n_variables) Arrays of lower and upper bounds can be extracted by: mins, maxs = vocs.bounds

xopt.vocs.VOCS.constant_names property
constant_names

Returns a sorted list of constraint names

xopt.vocs.VOCS.constraint_names property
constraint_names

Returns a sorted list of constraint names

xopt.vocs.VOCS.n_constants property
n_constants

Returns the number of constants

xopt.vocs.VOCS.n_constraints property
n_constraints

Returns the number of constraints

xopt.vocs.VOCS.n_inputs property
n_inputs

Returns the number of inputs (variables and constants)

xopt.vocs.VOCS.n_objectives property
n_objectives

Returns the number of objectives

xopt.vocs.VOCS.n_observables property
n_observables

Returns the number of constraints

xopt.vocs.VOCS.n_outputs property
n_outputs

Returns the number of outputs len(objectives + constraints + observables)

xopt.vocs.VOCS.n_variables property
n_variables

Returns the number of variables

xopt.vocs.VOCS.objective_names property
objective_names

Returns a sorted list of objective names

xopt.vocs.VOCS.output_names property
output_names

Returns a list of expected output keys: (objectives + constraints + observables) Each sub-list is sorted.

xopt.vocs.VOCS.variable_names property
variable_names

Returns a sorted list of variable names

Functions

xopt.vocs.VOCS.constraint_data
constraint_data(data, prefix='constraint_')

Returns a dataframe containing constraint data transformed according to vocs.constraints such that values that satisfy each constraint are negative.

Returns:

Type Description
result: DataFrame

Processed Dataframe

Source code in xopt/vocs.py
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def constraint_data(
    self,
    data: Union[pd.DataFrame, List[Dict], List[Dict]],
    prefix: str = "constraint_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing constraint data transformed according to
    `vocs.constraints` such that values that satisfy each constraint are negative.

    Parameters
    ----------
        data: DataFrame
            Data to be processed.
        prefix: str, optional
            Prefix added to column names.

    Returns
    -------
        result: DataFrame
            Processed Dataframe
    """
    return form_constraint_data(self.constraints, data, prefix)
xopt.vocs.VOCS.convert_dataframe_to_inputs
convert_dataframe_to_inputs(data, include_constants=True)

Extracts only inputs from a dataframe. This will add constants if include_constants is true.

Source code in xopt/vocs.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
def convert_dataframe_to_inputs(
    self, data: pd.DataFrame, include_constants=True
) -> pd.DataFrame:
    """
    Extracts only inputs from a dataframe.
    This will add constants if `include_constants` is true.
    """
    # make sure that the df keys only contain vocs variables
    if not set(self.variable_names) == set(data.keys()):
        raise ValueError(
            "input dataframe column set must equal set of vocs variables"
        )

    # only keep the variables
    inner_copy = data.copy()

    # append constants if requested
    if include_constants:
        constants = self.constants
        if constants is not None:
            for name, val in constants.items():
                inner_copy[name] = val

    return inner_copy
xopt.vocs.VOCS.convert_numpy_to_inputs
convert_numpy_to_inputs(inputs, include_constants=True)

convert 2D numpy array to list of dicts (inputs) for evaluation Assumes that the columns of the array match correspond to `sorted(self.vocs.variables.keys())

Source code in xopt/vocs.py
310
311
312
313
314
315
316
317
318
319
320
def convert_numpy_to_inputs(
    self, inputs: np.ndarray, include_constants=True
) -> pd.DataFrame:
    """
    convert 2D numpy array to list of dicts (inputs) for evaluation
    Assumes that the columns of the array match correspond to
    `sorted(self.vocs.variables.keys())

    """
    df = pd.DataFrame(inputs, columns=self.variable_names)
    return self.convert_dataframe_to_inputs(df, include_constants)
xopt.vocs.VOCS.correct_list_types
correct_list_types(v)

make sure that constraint list types are correct

Source code in xopt/vocs.py
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
@field_validator("constraints")
def correct_list_types(cls, v):
    """make sure that constraint list types are correct"""
    for _, item in v.items():
        if not isinstance(item[0], str):
            raise ValueError(
                "constraint specification list must have the first "
                "element as a string`"
            )

        if not isinstance(item[1], float):
            raise ValueError(
                "constraint specification list must have the second "
                "element as a float"
            )

    return v
xopt.vocs.VOCS.cumulative_optimum
cumulative_optimum(data)

Returns the cumulative optimum for the given DataFrame.

Parameters:

Name Type Description Default
data DataFrame

Data for which the cumulative optimum shall be calculated.

required

Returns:

Type Description
DataFrame

Cumulative optimum for the given DataFrame.

Source code in xopt/vocs.py
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def cumulative_optimum(self, data: pd.DataFrame) -> pd.DataFrame:
    """
    Returns the cumulative optimum for the given DataFrame.

    Parameters
    ----------
    data: DataFrame
        Data for which the cumulative optimum shall be calculated.

    Returns
    -------
    DataFrame
        Cumulative optimum for the given DataFrame.

    """
    if not self.objectives:
        raise RuntimeError("No objectives defined.")
    if data.empty:
        return pd.DataFrame()
    obj_name = self.objective_names[0]
    obj = self.objectives[obj_name]
    get_opt = np.nanmax if obj == "MAXIMIZE" else np.nanmin
    feasible = self.feasibility_data(data)["feasible"]
    feasible_obj_values = [
        data[obj_name].values[i] if feasible[i] else np.nan
        for i in range(len(data))
    ]
    cumulative_optimum = np.array(
        [get_opt(feasible_obj_values[: i + 1]) for i in range(len(data))]
    )
    return pd.DataFrame({f"best_{obj_name}": cumulative_optimum}, index=data.index)
xopt.vocs.VOCS.denormalize_inputs
denormalize_inputs(input_points)

Denormalize input data (transform data from the range [0,1]) based on the variable ranges defined in the VOCS.

Parameters:

Name Type Description Default
input_points DataFrame

A DataFrame containing normalized input data in the range [0,1].

required

Returns:

Name Type Description
result DataFrame

A DataFrame with denormalized input data corresponding to the specified variable ranges. Contains columns equal to the intersection between input_points and vocs.variable_names.

Notes

If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.

Source code in xopt/vocs.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def denormalize_inputs(self, input_points: pd.DataFrame) -> pd.DataFrame:
    """
    Denormalize input data (transform data from the range [0,1]) based on the
    variable ranges defined in the VOCS.

    Parameters
    ----------
    input_points : pd.DataFrame
        A DataFrame containing normalized input data in the range [0,1].

    Returns
    -------
    result : pd.DataFrame
        A DataFrame with denormalized input data corresponding to the
        specified variable ranges. Contains columns equal to the intersection
        between `input_points` and `vocs.variable_names`.

    Notes
    -----

    If the input DataFrame is empty or no variable information is available in
    the VOCS, an empty DataFrame is returned.

    """
    denormed_data = {}
    for name in self.variable_names:
        if name in input_points.columns:
            width = self.variables[name][1] - self.variables[name][0]
            denormed_data[name] = (
                input_points[name] * width + self.variables[name][0]
            )

    if len(denormed_data):
        return pd.DataFrame(denormed_data)
    else:
        return pd.DataFrame([])
xopt.vocs.VOCS.extract_data
extract_data(data, return_raw=False, return_valid=False)

split dataframe into seperate dataframes for variables, objectives and constraints based on vocs - objective data is transformed based on vocs.objectives properties

Returns:

Type Description
variable_data : DataFrame
Dataframe containing variable data

objective_data : DataFrame Dataframe containing objective data constraint_data : DataFrame Dataframe containing constraint data

Source code in xopt/vocs.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
def extract_data(self, data: pd.DataFrame, return_raw=False, return_valid=False):
    """
    split dataframe into seperate dataframes for variables, objectives and
    constraints based on vocs - objective data is transformed based on
    `vocs.objectives` properties

    Parameters
    ----------
        data: DataFrame
            Dataframe to be split
        return_raw : bool, optional
            If True, return untransformed objective data
        return_valid : bool, optional
            If True, only return data that satisfies all of the contraint
            conditions.

    Returns
    -------
        variable_data : DataFrame
            Dataframe containing variable data
        objective_data : DataFrame
            Dataframe containing objective data
        constraint_data : DataFrame
            Dataframe containing constraint data
    """
    variable_data = self.variable_data(data, "")
    objective_data = self.objective_data(data, "", return_raw)
    constraint_data = self.constraint_data(data, "")
    observable_data = self.observable_data(data, "")

    if return_valid:
        feasible_status = self.feasibility_data(data)["feasible"]
        return (
            variable_data[feasible_status],
            objective_data[feasible_status],
            constraint_data[feasible_status],
            observable_data[feasible_status],
        )

    return variable_data, objective_data, constraint_data, observable_data
xopt.vocs.VOCS.feasibility_data
feasibility_data(data, prefix='feasible_')

Returns a dataframe containing booleans denoting if a constraint is satisfied or not. Returned dataframe also contains a column feasible which denotes if all constraints are satisfied.

Returns:

Type Description
result: DataFrame

Processed Dataframe

Source code in xopt/vocs.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def feasibility_data(
    self,
    data: Union[pd.DataFrame, List[Dict], List[Dict]],
    prefix: str = "feasible_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing booleans denoting if a constraint is satisfied or
    not. Returned dataframe also contains a column `feasible` which denotes if
    all constraints are satisfied.

    Parameters
    ----------
        data: DataFrame
            Data to be processed.
        prefix: str, optional
            Prefix added to column names.

    Returns
    -------
        result: DataFrame
            Processed Dataframe
    """
    return form_feasibility_data(self.constraints, data, prefix)
xopt.vocs.VOCS.normalize_inputs
normalize_inputs(input_points)

Normalize input data (transform data into the range [0,1]) based on the variable ranges defined in the VOCS.

Parameters:

Name Type Description Default
input_points DataFrame

A DataFrame containing input data to be normalized.

required

Returns:

Name Type Description
result DataFrame

A DataFrame with input data in the range [0,1] corresponding to the specified variable ranges. Contains columns equal to the intersection between input_points and vocs.variable_names.

Notes

If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.

Source code in xopt/vocs.py
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def normalize_inputs(self, input_points: pd.DataFrame) -> pd.DataFrame:
    """
    Normalize input data (transform data into the range [0,1]) based on the
    variable ranges defined in the VOCS.

    Parameters
    ----------
    input_points : pd.DataFrame
        A DataFrame containing input data to be normalized.

    Returns
    -------
    result : pd.DataFrame
        A DataFrame with input data in the range [0,1] corresponding to the
        specified variable ranges. Contains columns equal to the intersection
        between `input_points` and `vocs.variable_names`.

    Notes
    -----

    If the input DataFrame is empty or no variable information is available in
    the VOCS, an empty DataFrame is returned.

    """
    normed_data = {}
    for name in self.variable_names:
        if name in input_points.columns:
            width = self.variables[name][1] - self.variables[name][0]
            normed_data[name] = (
                input_points[name] - self.variables[name][0]
            ) / width

    if len(normed_data):
        return pd.DataFrame(normed_data)
    else:
        return pd.DataFrame([])
xopt.vocs.VOCS.objective_data
objective_data(data, prefix='objective_', return_raw=False)

Returns a dataframe containing objective data transformed according to vocs.objectives such that we always assume minimization.

Returns:

Type Description
result: DataFrame

Processed Dataframe

Source code in xopt/vocs.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def objective_data(
    self,
    data: Union[pd.DataFrame, List[Dict], List[Dict]],
    prefix: str = "objective_",
    return_raw=False,
) -> pd.DataFrame:
    """
    Returns a dataframe containing objective data transformed according to
    `vocs.objectives` such that we always assume minimization.

    Parameters
    ----------
        data: DataFrame
            Data to be processed.
        prefix: str, optional
            Prefix added to column names.

    Returns
    -------
        result: DataFrame
            Processed Dataframe
    """
    return form_objective_data(self.objectives, data, prefix, return_raw)
xopt.vocs.VOCS.observable_data
observable_data(data, prefix='observable_')

Returns a dataframe containing observable data

Returns:

Type Description
result: DataFrame

Processed Dataframe

Source code in xopt/vocs.py
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def observable_data(
    self,
    data: Union[pd.DataFrame, List[Dict], List[Dict]],
    prefix: str = "observable_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing observable data

    Parameters
    ----------
        data: DataFrame
            Data to be processed.
        prefix: str, optional
            Prefix added to column names.

    Returns
    -------
        result: DataFrame
            Processed Dataframe
    """
    return form_observable_data(self.observable_names, data, prefix)
xopt.vocs.VOCS.random_inputs
random_inputs(n=None, custom_bounds=None, include_constants=True, seed=None)

Uniform sampling of the variables.

Returns a dict of inputs.

If include_constants, the vocs.constants are added to the dict.

Optional: n (integer) to make arrays of inputs, of size n. seed (integer) to initialize the random number generator

Source code in xopt/vocs.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def random_inputs(
    self,
    n: int = None,
    custom_bounds: dict = None,
    include_constants: bool = True,
    seed: int = None,
) -> list[dict]:
    """
    Uniform sampling of the variables.

    Returns a dict of inputs.

    If include_constants, the vocs.constants are added to the dict.

    Optional:
        n (integer) to make arrays of inputs, of size n.
        seed (integer) to initialize the random number generator

    """
    inputs = {}
    if seed is None:
        rng_sample_function = np.random.random
    else:
        rng = np.random.default_rng(seed=seed)
        rng_sample_function = rng.random

    # get bounds
    # if custom_bounds is specified then they will be clipped inside
    # vocs variable bounds -- raise a warning in this case
    if custom_bounds is None:
        bounds = self.variables
    else:
        variable_bounds = pd.DataFrame(self.variables)

        # check type
        if not isinstance(custom_bounds, dict):
            raise TypeError("`custom_bounds` must be a dict")

        # check custom bounds validity
        try:
            validate_variable_bounds(custom_bounds)
        except ValueError:
            raise ValueError("specified `custom_bounds` not valid")

        old_custom_bounds = deepcopy(custom_bounds)

        custom_bounds = pd.DataFrame(custom_bounds)
        custom_bounds = custom_bounds.clip(
            variable_bounds.iloc[0], variable_bounds.iloc[1], axis=1
        )
        bounds = custom_bounds.to_dict()

        # check to make sure clipped values are not equal -- if not custom_bounds
        # are not inside vocs bounds
        for name, value in bounds.items():
            if value[0] == value[1]:
                raise ValueError(
                    f"specified `custom_bounds` for {name} is "
                    f"outside vocs domain"
                )

        # if clipping was used then raise a warning
        if bounds != old_custom_bounds:
            warnings.warn(
                "custom bounds were clipped by vocs bounds", RuntimeWarning
            )

        for k in bounds.keys():
            bounds[k] = [bounds[k][i] for i in range(2)]

    for key, val in bounds.items():  # No need to sort here
        a, b = val
        x = rng_sample_function(n)
        inputs[key] = x * a + (1 - x) * b

    # Constants
    if include_constants and self.constants is not None:
        inputs.update(self.constants)

    if n is None:
        return [inputs]
    else:
        return pd.DataFrame(inputs).to_dict("records")
xopt.vocs.VOCS.select_best
select_best(data, n=1)

get the best value and point for a given data set based on vocs - does not work for multi-objective problems - data that violates any constraints is ignored

Returns:

Type Description
index: index of best point

value: value of best point params: input parameters that give the best point

Source code in xopt/vocs.py
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
def select_best(self, data: pd.DataFrame, n: int = 1):
    """
    get the best value and point for a given data set based on vocs
    - does not work for multi-objective problems
    - data that violates any constraints is ignored

    Parameters
    ----------
        data: DataFrame
            Dataframe to select best point from
        n: int, optional
            Number of best points to return

    Returns
    -------
        index: index of best point
        value: value of best point
        params: input parameters that give the best point
    """
    if self.n_objectives != 1:
        raise NotImplementedError(
            "cannot select best point when n_objectives is not 1"
        )

    if data.empty:
        raise RuntimeError("cannot select best point if dataframe is empty")

    feasible_data = self.feasibility_data(data)
    if feasible_data.empty:
        raise RuntimeError(
            "cannot select best point if no points satisfy the given constraints"
        )

    ascending_flag = {"MINIMIZE": True, "MAXIMIZE": False}
    obj = self.objectives[self.objective_names[0]]
    obj_name = self.objective_names[0]
    res = data[feasible_data["feasible"]].sort_values(
        obj_name, ascending=ascending_flag[obj]
    )[obj_name][:n]

    params = data.iloc[res.index.to_numpy()][self.variable_names].to_dict(
        orient="records"
    )[0]

    return res.index.to_numpy(), res.to_numpy(), params
xopt.vocs.VOCS.validate_input_data
validate_input_data(input_points)

Validates input data. Raises an error if the input data does not satisfy requirements given by vocs.

Returns:

Type Description
None

Raises:

Type Description
ValueError: if input data does not satisfy requirements.
Source code in xopt/vocs.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
def validate_input_data(self, input_points: pd.DataFrame) -> None:
    """
    Validates input data. Raises an error if the input data does not satisfy
    requirements given by vocs.

    Parameters
    ----------
        input_points : DataFrame
            Input data to be validated.

    Returns
    -------
        None

    Raises
    ------
        ValueError: if input data does not satisfy requirements.
    """
    validate_input_data(self, input_points)
xopt.vocs.VOCS.variable_data
variable_data(data, prefix='variable_')

Returns a dataframe containing variables according to vocs.variables in sorted order

Returns:

Type Description
result: DataFrame

Processed Dataframe

Source code in xopt/vocs.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
def variable_data(
    self,
    data: Union[pd.DataFrame, List[Dict], List[Dict]],
    prefix: str = "variable_",
) -> pd.DataFrame:
    """
    Returns a dataframe containing variables according to `vocs.variables` in sorted
    order

    Parameters
    ----------
        data: DataFrame
            Data to be processed.
        prefix: str, optional
            Prefix added to column names.

    Returns
    -------
        result: DataFrame
            Processed Dataframe
    """
    return form_variable_data(self.variables, data, prefix=prefix)