Vocs
xopt.vocs.VOCS ¶
Bases: XoptBaseModel
Variables, Objectives, Constraints, and other Settings (VOCS) data structure to describe optimization problems.
Attributes¶
xopt.vocs.VOCS.all_names
property
¶
all_names
Returns all vocs names (variables, constants, objectives, constraints)
xopt.vocs.VOCS.bounds
property
¶
bounds
Returns a bounds array (mins, maxs) of shape (2, n_variables) Arrays of lower and upper bounds can be extracted by: mins, maxs = vocs.bounds
xopt.vocs.VOCS.constraint_names
property
¶
constraint_names
Returns a sorted list of constraint names
xopt.vocs.VOCS.n_outputs
property
¶
n_outputs
Returns the number of outputs len(objectives + constraints + observables)
xopt.vocs.VOCS.output_names
property
¶
output_names
Returns a list of expected output keys: (objectives + constraints + observables) Each sub-list is sorted.
Functions¶
xopt.vocs.VOCS.constraint_data ¶
constraint_data(data, prefix='constraint_')
Returns a dataframe containing constraint data transformed according to
vocs.constraints
such that values that satisfy each constraint are negative.
Returns:
Type | Description |
---|---|
result: DataFrame
|
Processed Dataframe |
Source code in xopt/vocs.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
xopt.vocs.VOCS.convert_dataframe_to_inputs ¶
convert_dataframe_to_inputs(data, include_constants=True)
Extracts only inputs from a dataframe.
This will add constants if include_constants
is true.
Source code in xopt/vocs.py
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
xopt.vocs.VOCS.convert_numpy_to_inputs ¶
convert_numpy_to_inputs(inputs, include_constants=True)
convert 2D numpy array to list of dicts (inputs) for evaluation Assumes that the columns of the array match correspond to `sorted(self.vocs.variables.keys())
Source code in xopt/vocs.py
310 311 312 313 314 315 316 317 318 319 320 |
|
xopt.vocs.VOCS.correct_list_types ¶
correct_list_types(v)
make sure that constraint list types are correct
Source code in xopt/vocs.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
xopt.vocs.VOCS.cumulative_optimum ¶
cumulative_optimum(data)
Returns the cumulative optimum for the given DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
Data for which the cumulative optimum shall be calculated. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
Cumulative optimum for the given DataFrame. |
Source code in xopt/vocs.py
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
|
xopt.vocs.VOCS.denormalize_inputs ¶
denormalize_inputs(input_points)
Denormalize input data (transform data from the range [0,1]) based on the variable ranges defined in the VOCS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_points
|
DataFrame
|
A DataFrame containing normalized input data in the range [0,1]. |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
DataFrame
|
A DataFrame with denormalized input data corresponding to the
specified variable ranges. Contains columns equal to the intersection
between |
Notes
If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.
Source code in xopt/vocs.py
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
|
xopt.vocs.VOCS.extract_data ¶
extract_data(data, return_raw=False, return_valid=False)
split dataframe into seperate dataframes for variables, objectives and
constraints based on vocs - objective data is transformed based on
vocs.objectives
properties
Returns:
Type | Description |
---|---|
variable_data : DataFrame
|
objective_data : DataFrame Dataframe containing objective data constraint_data : DataFrame Dataframe containing constraint data |
Source code in xopt/vocs.py
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
|
xopt.vocs.VOCS.feasibility_data ¶
feasibility_data(data, prefix='feasible_')
Returns a dataframe containing booleans denoting if a constraint is satisfied or
not. Returned dataframe also contains a column feasible
which denotes if
all constraints are satisfied.
Returns:
Type | Description |
---|---|
result: DataFrame
|
Processed Dataframe |
Source code in xopt/vocs.py
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
xopt.vocs.VOCS.normalize_inputs ¶
normalize_inputs(input_points)
Normalize input data (transform data into the range [0,1]) based on the variable ranges defined in the VOCS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_points
|
DataFrame
|
A DataFrame containing input data to be normalized. |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
DataFrame
|
A DataFrame with input data in the range [0,1] corresponding to the
specified variable ranges. Contains columns equal to the intersection
between |
Notes
If the input DataFrame is empty or no variable information is available in the VOCS, an empty DataFrame is returned.
Source code in xopt/vocs.py
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
|
xopt.vocs.VOCS.objective_data ¶
objective_data(data, prefix='objective_', return_raw=False)
Returns a dataframe containing objective data transformed according to
vocs.objectives
such that we always assume minimization.
Returns:
Type | Description |
---|---|
result: DataFrame
|
Processed Dataframe |
Source code in xopt/vocs.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
xopt.vocs.VOCS.observable_data ¶
observable_data(data, prefix='observable_')
Returns a dataframe containing observable data
Returns:
Type | Description |
---|---|
result: DataFrame
|
Processed Dataframe |
Source code in xopt/vocs.py
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
|
xopt.vocs.VOCS.random_inputs ¶
random_inputs(n=None, custom_bounds=None, include_constants=True, seed=None)
Uniform sampling of the variables.
Returns a dict of inputs.
If include_constants, the vocs.constants are added to the dict.
Optional: n (integer) to make arrays of inputs, of size n. seed (integer) to initialize the random number generator
Source code in xopt/vocs.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
xopt.vocs.VOCS.select_best ¶
select_best(data, n=1)
get the best value and point for a given data set based on vocs - does not work for multi-objective problems - data that violates any constraints is ignored
Returns:
Type | Description |
---|---|
index: index of best point
|
value: value of best point params: input parameters that give the best point |
Source code in xopt/vocs.py
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
|
xopt.vocs.VOCS.validate_input_data ¶
validate_input_data(input_points)
Validates input data. Raises an error if the input data does not satisfy requirements given by vocs.
Returns:
Type | Description |
---|---|
None
|
|
Raises:
Type | Description |
---|---|
ValueError: if input data does not satisfy requirements.
|
|
Source code in xopt/vocs.py
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
|
xopt.vocs.VOCS.variable_data ¶
variable_data(data, prefix='variable_')
Returns a dataframe containing variables according to vocs.variables
in sorted
order
Returns:
Type | Description |
---|---|
result: DataFrame
|
Processed Dataframe |
Source code in xopt/vocs.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|