Xopt¶
Flexible optimization of arbitrary problems in Python.
The goal of this package is to provide advanced algorithmic support for arbitrary optimization problems (simulations/control systems) with minimal required coding. Users can easily connect arbitrary evaluation functions to advanced algorithms with minimal coding with support for multi-threaded or MPI-enabled execution.
Currenty Xopt provides:
- Optimization algorithms:
- Genetic algorithms
cnsgaContinuous NSGA-II with constraints
- Bayesian optimization (BO) algorithms:
upper_confidence_boundBO using Upper Confidence Bound acquisition function (w/ or w/o constraints, serial or parallel)expected_improvementBO using Expected Improvement acquisition function (w/ or w/o constraints, serial or parallel)moboMulti-objective BO (w/ or w/o constraints, serial or parallel)bayesian_explorationAutonomous function characterization using Bayesian ExplorationmggpoParallelized hybrid Multi-Generation Multi-Objective Bayesian optimizationmulti_fidelityMulti-fidelity single or multi objective optimizationBAXBayesian algorithm execution using virtual measurements- BO customization:
- Trust region BO
- Heteroskedastic noise specification
- Multiple acquisition function optimization stratigies
extremum_seekingExtremum seeking time-dependent optimizationrcdsRobust Conjugate Direction Search (RCDS)neldermeadNelder-Mead Simplex- Sampling algorithms:
randomUniform random sampling- Convenient YAML/JSON based input format
- Driver programs:
xopt.mpi.runParallel MPI execution using this input format
Xopt does not provide:
- your custom simulation via an evaluate function.
Rather, Xopt asks you to define this function.
Getting Started¶
Xopt Overview PDF gives an overview of Xopt's design and usage.
Xopt Built-In Generators provides a list of available algorithms
implemented in the Xopt Generator framework.
Simple Bayesian Optimization Example shows Xopt usage for a simple optimization problem.
Xopt IPAC23 paper summarizes the usage of Xopt in particle accelerator physics problems.
Configuring an Xopt run¶
Xopt runs can be specified via a YAML file or dictonary input. This requires generator, evaluator, and vocs to be specified, along with optional general options such as max_evaluations. An example to run a multi-objective optimiation of a user-defined function my_function is:
generator:
name: cnsga
population_size: 64
population_file: test.csv
output_path: .
evaluator:
function: my_function
function_kwargs:
my_arguments: 42
vocs:
variables:
x1: [0, 3.14159]
x2: [0, 3.14159]
objectives:
y1: MINIMIZE
y2: MINIMIZE
constraints:
c1: [GREATER_THAN, 0]
c2: [LESS_THAN, 0.5]
constants: {a: dummy_constant}
max_evaluations: 6400
Xopt can also be used through a simple Python interface.
import math
from xopt.vocs import VOCS
from xopt.evaluator import Evaluator
from xopt.generators.bayesian import UpperConfidenceBoundGenerator
from xopt import Xopt
# define variables and function objectives
vocs = VOCS(
variables={"x": [0, 2 * math.pi]},
objectives={"f": "MINIMIZE"},
)
# define the function to optimize
def sin_function(input_dict):
return {"f": math.sin(input_dict["x"])}
# create Xopt evaluator, generator, and Xopt objects
evaluator = Evaluator(function=sin_function)
generator = UpperConfidenceBoundGenerator(vocs=vocs)
X = Xopt(evaluator=evaluator, generator=generator, vocs=vocs)
# call X.random_evaluate() to generate + evaluate 3 initial points
X.random_evaluate(3)
# run optimization for 10 steps
for i in range(10):
X.step()
# view collected data
print(X.data)
Defining an evaluation function¶
Xopt can interface with arbitrary evaluate functions (defined in Python) with the following form:
def evaluate(inputs: dict) -> dict:
""" your code here """
variables, constants and returns a dictionary
containing at least the
keys contained in objectives, constraints. Extra dictionary keys are tracked and
used in the evaluate function but are not modified by xopt.
Using MPI¶
Example MPI run, with xopt.yaml as the only user-defined file:
mpirun -n 64 python -m mpi4py.futures -m xopt.mpi.run xopt.yaml
Citing Xopt¶
If you use Xopt for your research, please consider adding the following
citation to your publications.
R. Roussel., et al., "Xopt: A simplified framework for optimization of accelerator problems using advanced algorithms",
in Proc. IPAC'23, Venezia.doi:https://doi.org/10.18429/JACoW-14th International Particle Accelerator Conference-THPL164
BibTex entry:
@inproceedings{Xopt,
title = {Xopt: A simplified framework for optimization of accelerator problems using advanced algorithms},
author = {R. Roussel and A. Edelen and A. Bartnik and C. Mayes},
year = 2023,
month = {05},
booktitle = {Proc. IPAC'23},
publisher = {JACoW Publishing, Geneva, Switzerland},
series = {IPAC'23 - 14th International Particle Accelerator Conference},
number = 14,
pages = {4796--4799},
doi = {doi:10.18429/jacow-ipac2023-thpl164},
isbn = {978-3-95450-231-8},
issn = {2673-5490},
url = {https://indico.jacow.org/event/41/contributions/2556},
paper = {THPL164},
venue = {Venezia},
language = {english}
}
Particular versions of Xopt can be cited from Zenodo